×

Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups. (English) Zbl 1292.20047

This paper is a part of a larger program initiated by V. Gerasimov [Geom. Funct. Anal. 19, No. 1, 137-169 (2009; Zbl 1226.20037)].
Let a discrete finitely generated group \(G\) act by homeomorphisms of a compactum (compact Hausdorff space) \(T\) in a way that the action is properly discontinuous on triples and cocompact on pairs. The first main result of the paper is a characterization of the preimages under the Floyd map of parabolic points in \(T\). From this theorem together with their previous results the authors deduce a complete description of the Floyd map for relatively hyperbolic groups. In the second theorem they use the Floyd completion to prove that the property of relative hyperbolicity is invariant under quasi-isometric maps. This result is then generalized to \(\alpha\)-isometric maps with any polynomial distortion function \(\alpha\).
One of the main technical ingredients of the proofs is a generalization of A. Karlsson’s lemma saying that the Floyd length of any (quasi)geodesic in the Cayley graph of a finitely generated group situated far away from the origin is small [Commun. Algebra 31, No. 11, 5361-5376 (2003; Zbl 1036.20032)].
As an application of their method, in the Appendix the authors give a short proof of Bowditch’s Theorem characterizing hyperbolicity [B. H. Bowditch, J. Am. Math. Soc. 11, No. 3, 643-667 (1998; Zbl 0906.20022)].

MSC:

20F67 Hyperbolic groups and nonpositively curved groups
20F65 Geometric group theory
57M07 Topological methods in group theory
20F05 Generators, relations, and presentations of groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beardon, A., Maskit, B.: Limit sets of Kleinian groups and finite sided fundamental polyhedra. Acta Math. 132, 1-12 (1974) · Zbl 0277.30017
[2] Behrstock, J., Dru\?tu, C., Mosher, L.: Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann. 344, 543-595 (2009) · Zbl 1220.20037
[3] Bowditch, B. H.: Relatively hyperbolic groups. Int. J. Algebra Comput. 22, no. 3, 1250016, 66 pp. · Zbl 1259.20052
[4] Bowditch, B. H.: Convergence groups and configuration spaces. In: Group Theory Down Under, J. Cossey et al. (eds.), de Gruyter, 23-54 (1999) · Zbl 0952.20032
[5] Bowditch, B. H.: A topological characterisation of hyperbolic groups. J. Amer. Math. Soc. 11, 643-667 (1998) · Zbl 0906.20022
[6] Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Grundlehren Math. Wiss. 319, Springer, Berlin (1999) · Zbl 0988.53001
[7] Bourbaki, N.: Topologie Générale. Hermann, Paris (1965)
[8] Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, Grad. Stud. in Math. 13, Amer. Math. Soc. (2001) · Zbl 0981.51016
[9] Cannon, J., Thurston, W. P.: Group invariant Peano curves. Geom. Topol. 11, 1315-1356 (2007) · Zbl 1136.57009
[10] Dru\?tu, C.: Relatively hyperbolic groups: geometry and quasi-isometric invariance. Com- ment. Math. Helv. 84, 503-546 (2009) · Zbl 1175.20032
[11] Farb, B.: Relatively hyperbolic groups. Geom. Funct. Anal. 8, 810-840 (1998) · Zbl 0985.20027
[12] Floyd, W. J.: Group completions and limit sets of Kleinian groups. Invent. Math. 57, 205-218 (1980) · Zbl 0428.20022
[13] Freden, E. M.: Properties of convergence groups and spaces. Conformal Geom. Dynam. 1, 13-23 (1997) · Zbl 0983.57029
[14] Gehring, F. W., Martin, G. J.: Discrete quasiconformal groups I. Proc. London Math. Soc. 55, 331-358 (1987) · Zbl 0628.30027
[15] Gerasimov, V., Expansive convergence groups are relatively hyperbolic. Geom. Funct. Anal. 19, 137-169 (2009) · Zbl 1226.20037
[16] Gerasimov, V.: Floyd maps for relatively hyperbolic groups. Geom. Funct. Anal. 22, 1361-1399 (2012) · Zbl 1276.20050
[17] Gerasimov, V., Potyagailo, L.: Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity. Groups Geom. Dynam., to appear; · Zbl 1364.20032
[18] Gerasimov, V., Potyagailo, L.: Quasiconvexity in relatively hyperbolic groups. · Zbl 1361.20031
[19] Gromov, M.: Hyperbolic groups. In: Essays in Group Theory, S. M. Gersten (ed.), MSRI Publ. 8, Springer, 75-263 (1987) · Zbl 0634.20015
[20] Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric Group Theory II, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, 1-295 (1993) · Zbl 0841.20039
[21] Hruska, G.: Relative hyperbolicity and relative quasiconvexity for countable groups. Al- gebr. Geom. Topol. 10, 1807-1856 (2010) · Zbl 1202.20046
[22] Kapovich, M., Leeb, B.: Quasi-isometries preserve the geometric decomposition of Haken manifolds. Invent. Math. 128, 393-416 (1997) · Zbl 0866.20033
[23] Karlsson, A.: Free subgroups of groups with non-trivial Floyd boundary. Comm. Alge- bra, 31, 5361-5376 (2003) · Zbl 1036.20032
[24] Kelley, J. L.: General Topology. Grad. Texts in Math. 27, Springer, New York (1975)
[25] Mitra, M.: Ending laminations for hyperbolic group extensions. Geom. Funct. Anal. 7, 379-402 (1997) · Zbl 0880.57001
[26] Myrberg, P. J.: Untersuchungen über die automorphen Funktionen beliebig vieler Vari- ablen. Acta Math. 46, 215-336 (1925) · JFM 51.0298.02
[27] Osin, D.: Relatively hyperbolic groups: intrinsic geometry, algebraic properties and algorithmic problems. Mem. Amer. Math. Soc. 179, no. 843 (2006), vi + 100 pp. · Zbl 1093.20025
[28] Tukia, P.: A remark on the paper by Floyd. In: Holomorphic Functions and Moduli, Vol. II (Berkeley, CA, 1986), MSRI Publ. 11, Springer, New York, 165-172 (1988) · Zbl 0653.30027
[29] Tukia, P.: Convergence groups and Gromov’s metric hyperbolic spaces. New Zealand J. Math. 23, 157-187 (1994) · Zbl 0855.30036
[30] Tukia, P.: Conical limit points and uniform convergence groups. J. Reine Angew. Math. 501, 71-98 (1998) · Zbl 0909.30034
[31] Weil, A.: Sur les espaces à structure uniforme et sur la topologie générale. Hermann, Paris (1937) · JFM 63.0569.04
[32] Yaman, A., A topological characterisation of relatively hyperbolic groups. J. Reine Angew. Math. 566, 41-89 (2004) · Zbl 1043.20020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.