×

zbMATH — the first resource for mathematics

Interaction modes of multiple flexible flags in a uniform flow. (English) Zbl 1291.76380
Summary: Fish schooling is not merely a social behaviour; it also improves the efficiency of movement within a fluid environment. Inspired by the hydrodynamics of schooling, a group of flexible bodies was modelled as a collection of individuals arranged in a combination of tandem and side-by-side formations. The downstream bodies were found to be strongly influenced by the vortices shed from an upstream body, as revealed in the vortex-vortex and vortex-body interactions. To investigate the interactions between flexible bodies and vortices, the present study examined flexible flags in a viscous flow by using an improved version of the immersed boundary method. Three different flag formations were modelled to cover the basic structures involved in fish schooling: triangular, diamond and conical formations. The drag coefficients of the downstream flags could be decreased below the value for a single flag by adjusting the streamwise and spanwise gap distances and the flag bending coefficient. The drag variations were influenced by the interactions between vortices shed from the upstream flexible flags and those surrounding the downstream flags. The interactions between the flexible flags were investigated as a function of both the gap distance between the flags and the bending coefficients. The maximum drag reduction and the trailing flag position were calculated for different sets of conditions. Single-frequency and multifrequency modes were identified and were found to correspond to constructive and destructive vortex interaction modes, which explained the variations in the drag on the downstream flags.

MSC:
76Z10 Biopropulsion in water and in air
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112007005307 · Zbl 1124.76011 · doi:10.1017/S0022112007005307
[2] Fish. Bull. 74 pp 471– (1976)
[3] Zoologica 52 pp 25– (1967)
[4] DOI: 10.1017/S0022112094002016 · doi:10.1017/S0022112094002016
[5] Swimming Flying Nature 2 pp 703– (1975)
[6] Zoologica 50 pp 97– (1965)
[7] DOI: 10.1016/S0301-9322(98)00048-2 · Zbl 1137.76592 · doi:10.1016/S0301-9322(98)00048-2
[8] DOI: 10.1038/241290a0 · doi:10.1038/241290a0
[9] J. Ichthy 9 pp 578– (1969)
[10] Comments Theor. Biol. 5 pp 283– (1999)
[11] DOI: 10.1016/j.jcp.2011.05.028 · Zbl 1327.76106 · doi:10.1016/j.jcp.2011.05.028
[12] DOI: 10.1016/0021-9991(90)90103-8 · Zbl 0682.76105 · doi:10.1016/0021-9991(90)90103-8
[13] DOI: 10.1063/1.3659892 · Zbl 06423238 · doi:10.1063/1.3659892
[14] DOI: 10.1103/PhysRevLett.100.074301 · doi:10.1103/PhysRevLett.100.074301
[15] DOI: 10.1016/j.jfluidstructs.2003.10.001 · doi:10.1016/j.jfluidstructs.2003.10.001
[16] DOI: 10.1016/j.jsv.2009.01.028 · doi:10.1016/j.jsv.2009.01.028
[17] DOI: 10.1017/S0022112009992138 · Zbl 1183.76653 · doi:10.1017/S0022112009992138
[18] J. Fluid Mech. 611 pp 97– (2008)
[19] DOI: 10.2514/3.13396 · Zbl 0900.76071 · doi:10.2514/3.13396
[20] DOI: 10.1007/BF00000931 · doi:10.1007/BF00000931
[21] DOI: 10.1063/1.2736083 · Zbl 1146.76370 · doi:10.1063/1.2736083
[22] DOI: 10.1016/S0025-5564(98)10065-2 · Zbl 0934.92035 · doi:10.1016/S0025-5564(98)10065-2
[23] DOI: 10.1063/1.2814259 · Zbl 1182.76198 · doi:10.1063/1.2814259
[24] DOI: 10.1023/A:1021256500244 · Zbl 1021.76061 · doi:10.1023/A:1021256500244
[25] DOI: 10.1016/S1001-6058(06)60090-5 · doi:10.1016/S1001-6058(06)60090-5
[26] DOI: 10.1146/annurev-fluid-121108-145456 · Zbl 1299.76001 · doi:10.1146/annurev-fluid-121108-145456
[27] DOI: 10.1103/PhysRevLett.94.094302 · doi:10.1103/PhysRevLett.94.094302
[28] Am. Sci. 66 pp 166– (1978)
[29] DOI: 10.1063/1.3204672 · Zbl 1183.76460 · doi:10.1063/1.3204672
[30] Linear Algebra Appl. 58 pp 279– (1984)
[31] J. Fluid Mech. 455 pp 315– (2002)
[32] Soc. Auto. Engng pp 710213– (1971)
[33] DOI: 10.1103/PhysRevLett.101.194502 · doi:10.1103/PhysRevLett.101.194502
[34] DOI: 10.1038/279418a0 · doi:10.1038/279418a0
[35] DOI: 10.1126/science.284.5411.99 · doi:10.1126/science.284.5411.99
[36] J. Fluid Mech. 592 pp 393– (2007)
[37] DOI: 10.1126/science.1092367 · doi:10.1126/science.1092367
[38] DOI: 10.1016/j.jfluidstructs.2009.06.002 · doi:10.1016/j.jfluidstructs.2009.06.002
[39] Fish Physiol. Locomotion 7 pp 239– (1978) · doi:10.1016/S1546-5098(08)60166-1
[40] DOI: 10.1126/science.1088295 · doi:10.1126/science.1088295
[41] DOI: 10.1080/00140137908924623 · doi:10.1080/00140137908924623
[42] DOI: 10.1017/S0022112010003514 · Zbl 1205.76076 · doi:10.1017/S0022112010003514
[43] DOI: 10.1063/1.3092484 · Zbl 1183.76607 · doi:10.1063/1.3092484
[44] 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference (CDC-ECC ’05) pp 3904– (2005)
[45] DOI: 10.1063/1.1582476 · Zbl 1186.76611 · doi:10.1063/1.1582476
[46] DOI: 10.1016/j.jcp.2007.07.002 · Zbl 1388.74037 · doi:10.1016/j.jcp.2007.07.002
[47] DOI: 10.1007/s00332-004-0650-9 · Zbl 1181.76032 · doi:10.1007/s00332-004-0650-9
[48] DOI: 10.1006/jcph.2002.7066 · Zbl 1130.76406 · doi:10.1006/jcph.2002.7066
[49] DOI: 10.1017/S0022112007005563 · Zbl 1176.76044 · doi:10.1017/S0022112007005563
[50] DOI: 10.1017/S0022112009007903 · Zbl 1183.76709 · doi:10.1017/S0022112009007903
[51] DOI: 10.1098/rstb.2007.2082 · doi:10.1098/rstb.2007.2082
[52] DOI: 10.1038/35048643 · doi:10.1038/35048643
[53] DOI: 10.1038/35048530 · doi:10.1038/35048530
[54] DOI: 10.1115/1.3448871 · doi:10.1115/1.3448871
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.