zbMATH — the first resource for mathematics

Boundary particle method for Laplace transformed time fractional diffusion equations. (English) Zbl 1291.76256
Summary: This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.

76M28 Particle methods and lattice-gas methods
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
65R10 Numerical methods for integral transforms
35K05 Heat equation
44A10 Laplace transform
Full Text: DOI
[1] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[2] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1-77, (2000) · Zbl 0984.82032
[3] Hilfer, R., Applications of fractional calculus in physics, (2000), World Scientific Singapore · Zbl 0998.26002
[4] Scher, H.; Montroll, E. W., Anomalous transit-time dispersion in amorphous solids, Physical Review B, 12, 2455-2477, (1975)
[5] Gorenflo, R.; Mainardi, F.; Moretti, D.; Pagnini, G.; Paradisi, P., Discrete random walk models for space-time fractional diffusion, Chemical Physics, 284, 521-541, (2007)
[6] del-Castillo-Negrete, D.; Carreras, B. A.; Lynch, V. E., Front dynamics in reaction-diffusion systems with levy flights: a fractional diffusion approach, Physical Review Letters, 91, 018302, (2003)
[7] Szabo, T. L.; Wu, J., A model for longitudinal and shear wave propagation in viscoelastic media, Journal of Acoustical Society of America, 107, 2437-2446, (2000)
[8] Sokolov, I. M.; Klafter, J.; Blumen, A., Ballistic versus diffusive pair dispersion in the Richardson regime, Physical Review E, 61, 2717-2722, (2000)
[9] Gorenflo, R.; Luchko, Y.; Mainardi, F., Wright functions as scale-invariant solutions of the diffusion-wave equation, Journal of Computational and Applied Mathematics, 118, 175-191, (2000) · Zbl 0973.35012
[10] Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Y., Algorithms for the fractional calculus: a selection of numerical methods, Computer Methods in Applied Mechanics and Engineering, 194, 743-773, (2005) · Zbl 1119.65352
[11] Momani, S., An algorithm for solving the fractional convection – diffusion equation with nonlinear source term, Communications in Nonlinear Science and Numerical Simulation, 12, 1283-1290, (2007) · Zbl 1118.35301
[12] Valko, P. P.; Abate, J., Numerical inversion of 2-D Laplace transforms applied to fractional diffusion equations, Applied Numerical Mathematics, 53, 73-88, (2005) · Zbl 1060.65681
[13] Tadjeran, C.; Meerschaert, M. M., A second-order accurate numerical method for the two-dimensional fractional diffusion equation, Journal of Computational Physics, 220, 813-823, (2007) · Zbl 1113.65124
[14] Murio, D. A., Implicit finite difference approximation for time fractional diffusion equations, Computers and Mathematics with Applications, 56, 1138-1145, (2008) · Zbl 1155.65372
[15] Wang, H.; Wang, K.; Sircar, T., A direct O(nlog2N) finite difference method for fractional diffusion equations, Journal of Computational Physics, 229, 8095-8104, (2010) · Zbl 1198.65176
[16] Langlands, T. A.M.; Henry, B. I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, Journal of Computational Physics, 205, 719-736, (2005) · Zbl 1072.65123
[17] Cui, M., Compact finite difference method for the fractional diffusion equation, Journal of Computational Physics, 228, 7792-7804, (2009) · Zbl 1179.65107
[18] Zhuang, P.; Liu, F., Implicit difference approximation for the time fractional diffusion equation, Journal of Applied Mathematics and Computing, 22, 87-99, (2006) · Zbl 1140.65094
[19] Liu, F.; Shen, S.; Anh, V.; Turner, I., Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAM Journal, 46, 488-504, (2005) · Zbl 1082.60511
[20] Chen, C.-M.; Liu, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, Journal of Computational Physics, 227, 886-897, (2007) · Zbl 1165.65053
[21] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, Journal of Computational Physics, 225, 1533-1552, (2007) · Zbl 1126.65121
[22] Fix, G. J.; Roof, J. P., Least squares finite-element solution of a fractional order two-point boundary value problem, Computers Mathematics with Applications, 48, 1017-1033, (2004) · Zbl 1069.65094
[23] Jiang, Y.; Ma, J., High-order finite element methods for time-fractional partial differential equations, Journal of Computational and Applied Mathematics, 235, 3285-3290, (2011) · Zbl 1216.65130
[24] Li, C.; Zhao, Z.; Chen, Y., Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Computers and Mathematics with Applications, 62, 855-875, (2011) · Zbl 1228.65190
[25] Yang, Q.; Turner, I.; Liu, F.; Ilis, M., Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM Journal on Scientific Computing, 33, 1159-1180, (2011) · Zbl 1229.35315
[26] Katsikadelis, J. T., The BEM for numerical solution of partial fractional differential equations, Computers and Mathematics with Applications, 62, 891-901, (2011) · Zbl 1228.74103
[27] Brunner, H.; Ling, L.; Yamamoto, M., Numerical simulations of 2D fractional subdiffusion problems, Journal of Computational Physics, 229, 6613-6622, (2010) · Zbl 1197.65143
[28] Chen, W.; Ye, L.; Sun, H., Fractional diffusion equations by the kansa method, Computers and Mathematics with Applications, 59, 1614-1620, (2010) · Zbl 1189.35356
[29] Liu, Q.; Gu, Y.; Zhuang, P.; Liu, F.; Nie, Y., An implicit RBF meshless approach for time fractional diffusion equations, Computational Mechanics, 48, 1-12, (2011) · Zbl 1377.76025
[30] Gu, Y.; Zhuang, P.; Liu, F., An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, CMES: Computer Modeling in Engineering and Sciences, 56, 303-334, (2010) · Zbl 1231.65178
[31] Harald, S., Algorithm 368: numerical inversion of Laplace transforms [D5], Communications of the ACM, 13, 47-49, (1970)
[32] Gaver, D. P., Observing stochastic processes, and approximate transform inversion, Operations Research, 14, 444-459, (1966)
[33] Chen, W.; Fu, Z. J.; Jin, B. T., A truly boundary-only meshfree method for inhomogeneous problems based on recursive composite multiple reciprocity technique, Engineering Analysis with Boundary Elements, 34, 196-205, (2010) · Zbl 1244.65218
[34] Fu, Z. J.; Chen, W.; Yang, W., Winkler plate bending problems by a truly boundary-only boundary particle method, Computational Mechanics, 44, 757-763, (2009) · Zbl 1259.74019
[35] Fu, Z. J.; Chen, W.; Zhang, C. Z., Boundary particle method for Cauchy inhomogeneous potential problems, Inverse Problems in Science and Engineering, 20, 189-207, (2012) · Zbl 1242.65227
[36] Chen, W.; Shen, Z. J.; Shen, L. J.; Yuan, G. W., General solutions and fundamental solutions of varied orders to the vibrational thin, the berger, and the Winkler plates, Engineering Analysis with Boundary Elements, 29, 699-702, (2005) · Zbl 1182.74059
[37] Chen, W.; Fu, Z. J.; Qin, Q. H., Boundary particle method with high-order Trefftz functions, CMC-Computers Materials and Continua, 13, 201-217, (2010) · Zbl 1231.65241
[38] Nowak, A. J.; Neves, A. C., The multiple reciprocity boundary element method, (1994), Computational Mechanics Publication · Zbl 0868.73006
[39] Abate, J.; Valkó, P. P., Multi-precision Laplace transform inversion, International Journal for Numerical Methods in Engineering, 60, 979-993, (2004) · Zbl 1059.65118
[40] Abate, J.; Whitt, W., A unified framework for numerically inverting Laplace transforms, INFORMS Journal on Computing, 18, 408-421, (2006) · Zbl 1241.65114
[41] Li, X., Convergence of the method of fundamental solutions for solving the boundary value problem of modified Helmholtz equation, Applied Mathematics and Computation, 159, 113-125, (2004) · Zbl 1079.65107
[42] Gilbarg, D.; Trudinger, N. S., Elliptic partial differential equations of second order, (1977), Springer-Verlag New York · Zbl 0361.35003
[43] M.A. Golberg, C.S. Chen, The method of fundamental solutions for potential, Helmholtz and diffusion problems. in: Boundary Integral Methods: Numerical and Mathematical Aspects, Computational Mechanics Publications, 1998, pp. 103-176.
[44] Barnett, A. H.; Betcke, T., Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains, Journal of Computational Physics, 227, 7003-7026, (2008) · Zbl 1170.65082
[45] Chen, C. S.; Golberg, M. A.; Rashed, Y. F., A mesh free method for linear diffusion equations, Numerical Heat Transfer, Part B, 33, 469-486, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.