×

zbMATH — the first resource for mathematics

On coherent structure in wall turbulence. (English) Zbl 1291.76173
Summary: A new theory of coherent structure in wall turbulence is presented. The theory is the first to predict packets of hairpin vortices and other structure in turbulence, and their dynamics, based on an analysis of the Navier-Stokes equations, under an assumption of a turbulent mean profile. The assumption of the turbulent mean acts as a restriction on the class of possible structures. It is shown that the coherent structure is a manifestation of essentially low-dimensional flow dynamics, arising from a critical-layer mechanism. Using the decomposition presented in B. J. McKeon and A. S. Sharma [J. Fluid Mech. 658, 336–382 (2010; Zbl 1205.76138)], complex coherent structure is recreated from minimal superpositions of response modes predicted by the analysis, which take the form of radially varying travelling waves. The leading modes effectively constitute a low-dimensional description of the turbulent flow, which is optimal in the sense of describing the resonant effects around the critical layer and which minimally predicts all types of structure. The approach is general for the full range of scales. By way of example, simple combinations of these modes are offered that predict hairpins and modulated hairpin packets. The example combinations are chosen to represent observed structure, consistent with the nonlinear triadic interaction for wavenumbers that is required for self-interaction of structures. The combination of the three leading response modes at streamwise wavenumbers 6, 1, 7 and spanwise wavenumbers \(\pm\)6, \(\pm\)6, \(\pm\)12, respectively, with phase velocity \(2/3\), is understood to represent a turbulence ‘kernel’, which, it is proposed, constitutes a self-exciting process analogous to the near-wall cycle. Together, these interactions explain how the mode combinations may self-organize and self-sustain to produce experimentally observed structure. The phase interaction also leads to insight into skewness and correlation results known in the literature. It is also shown that the very large-scale motions act to organize hairpin-like structures such that they co-locate with areas of low streamwise momentum, by a mechanism of locally altering the shear profile. These energetic streamwise structures arise naturally from the resolvent analysis, rather than by a summation of hairpin packets. In addition, these packets are modulated through a ‘beat’ effect. The relationship between Taylor’s hypothesis and coherence is discussed, and both are shown to be the consequence of the localization of the response modes around the critical layer. A pleasing link is made to the classical laminar inviscid theory, whereby the essential mechanism underlying the hairpin vortex is captured by two obliquely interacting Kelvin-Stuart (cat’s eye) vortices. Evidence for the theory is presented based on comparison with observations of structure in turbulent flow reported in the experimental and numerical simulation literature and with exact solutions reported in the transitional literature.

MSC:
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112009990863 · Zbl 1183.76688 · doi:10.1017/S0022112009990863
[2] DOI: 10.1103/PhysRevE.82.066308 · doi:10.1103/PhysRevE.82.066308
[3] DOI: 10.1017/S0022112010003861 · Zbl 1225.76149 · doi:10.1017/S0022112010003861
[4] DOI: 10.1017/jfm.2011.101 · Zbl 1241.76278 · doi:10.1017/jfm.2011.101
[5] J. Fluid Mech. 478 pp 35– (2003)
[6] DOI: 10.1098/rsta.1991.0069 · Zbl 0731.76035 · doi:10.1098/rsta.1991.0069
[7] DOI: 10.1063/1.861721 · doi:10.1063/1.861721
[8] DOI: 10.1146/annurev.fluid.39.050905.110308 · doi:10.1146/annurev.fluid.39.050905.110308
[9] DOI: 10.1017/S0022112010003435 · Zbl 1205.76126 · doi:10.1017/S0022112010003435
[10] J. Fluid Mech. 613 pp 255– (2008)
[11] DOI: 10.1017/S002211200600259X · Zbl 1104.76025 · doi:10.1017/S002211200600259X
[12] DOI: 10.1017/jfm.2012.81 · Zbl 1250.76116 · doi:10.1017/jfm.2012.81
[13] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 · doi:10.1017/S0022112004009346
[14] Hydrodynamic Stability (2004)
[15] DOI: 10.1017/S0022112010006336 · Zbl 1225.76034 · doi:10.1017/S0022112010006336
[16] DOI: 10.1017/S0022112010006324 · Zbl 1225.76009 · doi:10.1017/S0022112010006324
[17] DOI: 10.1103/PhysRevE.82.056325 · doi:10.1103/PhysRevE.82.056325
[18] DOI: 10.1017/S0022112008004370 · Zbl 1156.76400 · doi:10.1017/S0022112008004370
[19] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[20] DOI: 10.1017/S0022112010002995 · Zbl 1205.76146 · doi:10.1017/S0022112010002995
[21] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[22] DOI: 10.1063/1.3589842 · Zbl 06422370 · doi:10.1063/1.3589842
[23] Phys. Fluids 23 (2011)
[24] The Structure of Turbulent Shear Flow (1976)
[25] DOI: 10.1007/s10697-006-0094-z · Zbl 1200.76109 · doi:10.1007/s10697-006-0094-z
[26] Stud. Appl. Maths 48 pp 181– (1969) · Zbl 0197.25403 · doi:10.1002/sapm1969483181
[27] The Structure of Turbulent Shear Flow (1956)
[28] DOI: 10.1017/S0022112005004726 · Zbl 1071.76015 · doi:10.1017/S0022112005004726
[29] DOI: 10.1063/1.864901 · doi:10.1063/1.864901
[30] DOI: 10.1063/1.869451 · doi:10.1063/1.869451
[31] DOI: 10.1017/S0022112005004751 · Zbl 1156.76307 · doi:10.1017/S0022112005004751
[32] DOI: 10.1098/rsta.2006.1940 · Zbl 1152.76369 · doi:10.1098/rsta.2006.1940
[33] DOI: 10.1017/S0022112005006397 · Zbl 1085.76519 · doi:10.1017/S0022112005006397
[34] AIAA Paper (2009)
[35] Proceedings of 2nd Midwestern Conference on Fluid Mechanics, Columbus, Ohio pp 1– (1952)
[36] DOI: 10.1017/S0022112006000607 · Zbl 1095.76021 · doi:10.1017/S0022112006000607
[37] DOI: 10.1146/annurev-fluid-122109-160753 · Zbl 1299.76002 · doi:10.1146/annurev-fluid-122109-160753
[38] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[39] DOI: 10.1098/rsta.1991.0070 · Zbl 0731.76033 · doi:10.1098/rsta.1991.0070
[40] DOI: 10.1007/s003489900087 · doi:10.1007/s003489900087
[41] DOI: 10.1098/rspa.1982.0168 · Zbl 0557.76052 · doi:10.1098/rspa.1982.0168
[42] Phys. Fluids 19 (2007)
[43] Seventh International Symposium on Turbulence and Shear Flow Phenomena (TSFP-7), Ottawa, Canada, 28–31 July (2011)
[44] Intl J. Heat Fluid Flow 31 pp 251– (2009)
[45] Phys. Fluids 22 (2010)
[46] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[47] DOI: 10.1137/0153002 · Zbl 0778.34060 · doi:10.1137/0153002
[48] DOI: 10.1098/rsta.2008.0236 · Zbl 1221.76060 · doi:10.1098/rsta.2008.0236
[49] DOI: 10.1017/S0022112095003351 · Zbl 0849.76030 · doi:10.1017/S0022112095003351
[50] J. Fluid Mech. 195 pp 163– (1986)
[51] DOI: 10.1017/S0022112082001311 · Zbl 0517.76057 · doi:10.1017/S0022112082001311
[52] DOI: 10.1017/S0022112010006245 · Zbl 1225.76161 · doi:10.1017/S0022112010006245
[53] DOI: 10.1098/rsta.2006.1942 · Zbl 1152.76421 · doi:10.1098/rsta.2006.1942
[54] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[55] Phys. Fluids 23 (2011)
[56] DOI: 10.1017/S0022112081001791 · doi:10.1017/S0022112081001791
[57] DOI: 10.1017/S0022112010002892 · Zbl 1205.76085 · doi:10.1017/S0022112010002892
[58] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[59] DOI: 10.1017/S0022112006003788 · Zbl 1108.76319 · doi:10.1017/S0022112006003788
[60] DOI: 10.1146/annurev-fluid-122109-160652 · Zbl 1210.76005 · doi:10.1146/annurev-fluid-122109-160652
[61] DOI: 10.1017/S0022112007005435 · Zbl 1113.76006 · doi:10.1017/S0022112007005435
[62] J. Fluid Mech. 589 pp 147– (2007)
[63] DOI: 10.1017/S0022112009007423 · Zbl 1183.76036 · doi:10.1017/S0022112009007423
[64] DOI: 10.1016/S0021-9991(03)00029-9 · Zbl 1047.76565 · doi:10.1016/S0021-9991(03)00029-9
[65] DOI: 10.1063/1.868594 · doi:10.1063/1.868594
[66] DOI: 10.1063/1.4793444 · Zbl 06456288 · doi:10.1063/1.4793444
[67] DOI: 10.1017/S002211201000176X · Zbl 1205.76138 · doi:10.1017/S002211201000176X
[68] DOI: 10.1017/S0022112003007304 · Zbl 1067.76513 · doi:10.1017/S0022112003007304
[69] Phys. Fluids 23 (2011)
[70] DOI: 10.1017/S0022112009006946 · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[71] DOI: 10.1146/annurev.fl.18.010186.002201 · doi:10.1146/annurev.fl.18.010186.002201
[72] DOI: 10.1016/j.ijheatfluidflow.2010.01.005 · doi:10.1016/j.ijheatfluidflow.2010.01.005
[73] DOI: 10.1007/s00348-011-1117-z · doi:10.1007/s00348-011-1117-z
[74] DOI: 10.1017/S002211201000621X · Zbl 1225.76162 · doi:10.1017/S002211201000621X
[75] DOI: 10.1098/rsta.2006.1944 · Zbl 1152.76407 · doi:10.1098/rsta.2006.1944
[76] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[77] DOI: 10.1088/0951-7715/18/6/R01 · Zbl 1084.76033 · doi:10.1088/0951-7715/18/6/R01
[78] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[79] DOI: 10.1007/s00348-013-1481-y · doi:10.1007/s00348-013-1481-y
[80] DOI: 10.1017/jfm.2011.375 · Zbl 1241.76032 · doi:10.1017/jfm.2011.375
[81] DOI: 10.1103/PhysRevLett.102.114501 · doi:10.1103/PhysRevLett.102.114501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.