×

zbMATH — the first resource for mathematics

Invariants for slightly heated decaying grid turbulence. (English) Zbl 1291.76155
Summary: The paper examines the validity of velocity and scalar invariants in slightly heated and approximately isotropic turbulence generated by passive conventional grids. By assuming that the variances \(\langle {u}^{2}\rangle\) and \(\langle{\theta}^{2}\rangle\) (\(u\) and \(\theta\) represent the longitudinal velocity and temperature fluctuations) decay along the streamwise direction \(x\) according to power laws \(\langle {u}^{2}\rangle \sim (x-x_{0})^{{n}_{u}}\) and \(\langle \theta^{2}\rangle\sim (x-x_{0})^{{n}_{\theta }}\) (\(x_{0}\) is the virtual origin of the flow) and with the further assumption that the one-point energy and scalar variance budgets are represented closely by a balance between the rates of change of \(\langle u^{2} \rangle \) and \(\langle \theta^{2}\rangle\) and the corresponding mean energy dissipation rates, the products \(\langle u^{2}\rangle \lambda_{u}^{- 2{n}_{u}} \) and \(\langle \theta^{2}\rangle \lambda_{\theta}^{- 2{n}_{\theta } }\) must remain constant with respect to \(x\). Here \(\lambda_{u}\) and \(\lambda_{\theta}\) are the Taylor and Corrsin microscales. This is unambiguously supported by previously available data, as well as new measurements of \(u\) and \(\theta\) made at small Reynolds numbers downstream of three different biplane grids. Implications for invariants based on measured integral length scales of \(u\) and \(\theta\) are also tested after confirming that the dimensionless energy and scalar variance dissipation rate parameters are approximately constant with \(x\). Since the magnitudes of \(n_{u}\) and \(n_{\theta}\) vary from grid to grid and may also depend on the Reynolds number, the Saffman and Corrsin invariants which correspond to a value of \(-1.2\) for \(n_{u}\) and \(n_{\theta}\) are unlikely to apply in general. The effect of the Reynolds number on \(n_{u}\) is discussed in the context of published data for both passive and active grids.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2514/1.3459 · doi:10.2514/1.3459
[2] Phys. Fluids 4 pp 1492– (1992)
[3] DOI: 10.1007/978-1-4612-2792-2_38 · doi:10.1007/978-1-4612-2792-2_38
[4] DOI: 10.1016/0017-9310(84)90115-7 · doi:10.1016/0017-9310(84)90115-7
[5] Turbulence: The Legacy of A. N. Kolmogorov (1995) · Zbl 0832.76001
[6] DOI: 10.1017/S0022112009007137 · Zbl 1183.76748 · doi:10.1017/S0022112009007137
[7] DOI: 10.1088/1468-5248/1/1/001 · Zbl 1082.76542 · doi:10.1088/1468-5248/1/1/001
[8] DOI: 10.1007/s003480050006 · doi:10.1007/s003480050006
[9] New J. Phys. 6 (2004)
[10] DOI: 10.1017/S0022112099005418 · Zbl 0973.76035 · doi:10.1017/S0022112099005418
[11] J. Aeronaut. Sci. 18 pp 417– (1951) · doi:10.2514/8.1982
[12] DOI: 10.1017/S0022112066000338 · doi:10.1017/S0022112066000338
[13] DOI: 10.1063/1.2055529 · Zbl 1187.76077 · doi:10.1063/1.2055529
[14] DOI: 10.1103/PhysRevE.73.066304 · doi:10.1103/PhysRevE.73.066304
[15] Exp. Fluids 5 pp 426– (1987)
[16] DOI: 10.1002/cpa.3160070104 · Zbl 0055.12504 · doi:10.1002/cpa.3160070104
[17] DOI: 10.1063/1.862168 · doi:10.1063/1.862168
[18] DOI: 10.1063/1.869084 · doi:10.1063/1.869084
[19] DOI: 10.1007/s00348-002-0566-9 · doi:10.1007/s00348-002-0566-9
[20] DOI: 10.1098/rsta.1956.0002 · Zbl 0074.42501 · doi:10.1098/rsta.1956.0002
[21] DOI: 10.1017/S0022112098002547 · Zbl 0941.76516 · doi:10.1017/S0022112098002547
[22] DOI: 10.1007/s003480050018 · doi:10.1007/s003480050018
[23] The Theory of Homogeneous Turbulence (1953)
[24] DOI: 10.1063/1.1314336 · Zbl 1184.76031 · doi:10.1063/1.1314336
[25] DOI: 10.1088/0022-3735/2/11/320 · doi:10.1088/0022-3735/2/11/320
[26] Quart. Appl. Maths. 6 pp 97– (1948)
[27] DOI: 10.1103/PhysRevE.69.016305 · doi:10.1103/PhysRevE.69.016305
[28] DOI: 10.1088/0022-3735/1/11/310 · doi:10.1088/0022-3735/1/11/310
[29] DOI: 10.1017/S0022112003004713 · Zbl 1073.76044 · doi:10.1017/S0022112003004713
[30] DOI: 10.1017/S0022112078002335 · doi:10.1017/S0022112078002335
[31] J. Fluid Mech. 332 pp 395– (1997)
[32] J. Fluid Mech. 459 pp 429– (2002)
[33] DOI: 10.1017/S0022112004008456 · Zbl 1069.76024 · doi:10.1017/S0022112004008456
[34] DOI: 10.1016/j.physleta.2011.01.006 · doi:10.1016/j.physleta.2011.01.006
[35] DOI: 10.1007/s00348-009-0704-8 · doi:10.1007/s00348-009-0704-8
[36] DOI: 10.1016/j.physleta.2011.11.040 · Zbl 1255.76032 · doi:10.1016/j.physleta.2011.11.040
[37] DOI: 10.1063/1.1136776 · doi:10.1063/1.1136776
[38] DOI: 10.1017/jfm.2011.353 · Zbl 1241.76050 · doi:10.1017/jfm.2011.353
[39] J. Aeronaut. Sci. 23 pp 754– (1956)
[40] DOI: 10.1017/S0022112080001309 · doi:10.1017/S0022112080001309
[41] DOI: 10.1063/1.869575 · Zbl 1185.76674 · doi:10.1063/1.869575
[42] Statistical Fluid Mechanics: Mechanics of Turbulence (vol. 2) (1975)
[43] DOI: 10.1017/S0022112090002919 · doi:10.1017/S0022112090002919
[44] DOI: 10.1016/0894-1777(88)90043-X · doi:10.1016/0894-1777(88)90043-X
[45] DOI: 10.1063/1.868319 · Zbl 0825.76278 · doi:10.1063/1.868319
[46] DOI: 10.1016/0169-5983(91)90030-M · doi:10.1016/0169-5983(91)90030-M
[47] Trudy Tsentr. Aero.-Giedrodin Inst. 440 pp 3– (1939)
[48] DOI: 10.1016/j.euromechflu.2011.04.009 · Zbl 1258.76096 · doi:10.1016/j.euromechflu.2011.04.009
[49] J. Méc. 17 pp 609– (1978)
[50] DOI: 10.1088/1468-5248/1/1/001 · Zbl 1082.76542 · doi:10.1088/1468-5248/1/1/001
[51] DOI: 10.1063/1.4731295 · Zbl 06429630 · doi:10.1063/1.4731295
[52] DOI: 10.1007/s00348-012-1331-3 · doi:10.1007/s00348-012-1331-3
[53] DOI: 10.1017/S0022112007006763 · Zbl 1118.76008 · doi:10.1017/S0022112007006763
[54] DOI: 10.1007/s00348-010-0974-1 · doi:10.1007/s00348-010-0974-1
[55] Proceedings 32nd AIAA Fluid Dynamics Conference, Exhibit 2861 (2002)
[56] DOI: 10.1017/jfm.2011.169 · Zbl 1241.76034 · doi:10.1017/jfm.2011.169
[57] DOI: 10.1017/S0022112009991807 · Zbl 1183.76749 · doi:10.1017/S0022112009991807
[58] Dokl. Akad. Nauk SSSR 31 pp 538– (1941)
[59] DOI: 10.1017/S0022112066001071 · doi:10.1017/S0022112066001071
[60] DOI: 10.1098/rspa.1938.0013 · Zbl 0018.15805 · doi:10.1098/rspa.1938.0013
[61] DOI: 10.1017/S0022112002003579 · Zbl 1063.76507 · doi:10.1017/S0022112002003579
[62] DOI: 10.1017/S0022112006001625 · Zbl 1100.76028 · doi:10.1017/S0022112006001625
[63] DOI: 10.1063/1.868366 · Zbl 0832.76031 · doi:10.1063/1.868366
[64] Turbulence (1975)
[65] DOI: 10.1063/1.869591 · doi:10.1063/1.869591
[66] DOI: 10.1017/S0022112092002180 · Zbl 0756.76030 · doi:10.1017/S0022112092002180
[67] DOI: 10.1017/S0022112083000506 · doi:10.1017/S0022112083000506
[68] J. Fluid Mech. 66 pp 561– (1974)
[69] DOI: 10.1017/S0022112067000552 · Zbl 0148.22403 · doi:10.1017/S0022112067000552
[70] Phys. Fluids 10 pp 1349– (1967)
[71] DOI: 10.1063/1.1604780 · Zbl 1186.76447 · doi:10.1063/1.1604780
[72] C. R. Acad. Sci. (Paris) Ser. B 282 pp 79– (1976)
[73] DOI: 10.1098/rsta.1954.0016 · Zbl 0056.19901 · doi:10.1098/rsta.1954.0016
[74] DOI: 10.1063/1.864731 · doi:10.1063/1.864731
[75] DOI: 10.1017/S0022112097008161 · doi:10.1017/S0022112097008161
[76] DOI: 10.1017/S0022112096007562 · doi:10.1017/S0022112096007562
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.