×

zbMATH — the first resource for mathematics

Conditional sampling of transitional boundary layers in pressure gradients. (English) Zbl 1291.76106
Summary: Statistical analysis of transitional boundary layers in pressure gradients is performed using the flow fields from direct numerical simulations of bypass transition. Laminar-turbulent discrimination separates the streaky laminar flow from turbulent regions. Individual streaks are identified and tracked in the flow field in order to obtain statistics of the amplitude of the streak population. An extreme value model is proposed for the distribution of streak amplitudes. It is also possible to differentiate those streaks which break down into turbulent spots from innocuous events. It is shown that turbulence onset is due to high-amplitude streaks, with streamwise perturbation velocity exceeding 20% of the free stream speed. The resulting turbulent spots are tracked downstream. The current analysis allows for the measurement of the lateral spreading angles of individual spots and their spatial extent and volumes. It is demonstrated that the volumetric growth rate of turbulent spots is insensitive to pressure gradient.

MSC:
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/jfm.2012.173 · Zbl 1248.76006 · doi:10.1017/jfm.2012.173
[2] DOI: 10.1017/S0022112006001893 · Zbl 1145.76025 · doi:10.1017/S0022112006001893
[3] DOI: 10.1115/1.2841356 · doi:10.1115/1.2841356
[4] DOI: 10.1017/S0022112000002810 · Zbl 0963.76509 · doi:10.1017/S0022112000002810
[5] DOI: 10.1017/jfm.2011.193 · Zbl 1241.76178 · doi:10.1017/jfm.2011.193
[6] DOI: 10.1007/s00348-005-0040-6 · doi:10.1007/s00348-005-0040-6
[7] Phys. Fluids 20 pp 124192– (2008)
[8] J. Fluid Mech. 604 pp 199– (2008)
[9] DOI: 10.1007/s00348-008-0522-4 · doi:10.1007/s00348-008-0522-4
[10] DOI: 10.1017/S0022112010003873 · Zbl 1225.76147 · doi:10.1017/S0022112010003873
[11] DOI: 10.1137/0128061 · Zbl 0276.76023 · doi:10.1137/0128061
[12] DOI: 10.1007/s10494-009-9216-0 · Zbl 1423.76006 · doi:10.1007/s10494-009-9216-0
[13] An Introduction to Statistical Modelling of Extreme Values (2001)
[14] DOI: 10.1115/1.1928286 · doi:10.1115/1.1928286
[15] Reda, Boundary Layer Stability and Transition to Turbulence vol. 114 pp 23– (1991)
[16] DOI: 10.1016/0894-1777(94)00111-K · doi:10.1016/0894-1777(94)00111-K
[17] DOI: 10.1017/S0022112000002469 · Zbl 0983.76027 · doi:10.1017/S0022112000002469
[18] DOI: 10.1017/S0022112000002354 · Zbl 1010.76029 · doi:10.1017/S0022112000002354
[19] DOI: 10.1017/S0022112078001809 · doi:10.1017/S0022112078001809
[20] DOI: 10.1063/1.863490 · Zbl 0466.76030 · doi:10.1063/1.863490
[21] J. Fluid Mech. 446 pp 199– (2001)
[22] DOI: 10.1017/S0022112004000941 · Zbl 1131.76326 · doi:10.1017/S0022112004000941
[23] J. Fluid Mech. 591 pp 461– (2007)
[24] DOI: 10.1017/S002211207200165X · doi:10.1017/S002211207200165X
[25] DOI: 10.1115/1.1860379 · doi:10.1115/1.1860379
[26] DOI: 10.1017/S0022112074001832 · doi:10.1017/S0022112074001832
[27] DOI: 10.1017/S0022112072000515 · doi:10.1017/S0022112072000515
[28] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[29] DOI: 10.1007/s001620050057 · Zbl 0910.76014 · doi:10.1007/s001620050057
[30] DOI: 10.1115/1.1521957 · doi:10.1115/1.1521957
[31] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[32] DOI: 10.1017/S002211208100061X · doi:10.1017/S002211208100061X
[33] DOI: 10.1017/jfm.2011.177 · Zbl 1241.76183 · doi:10.1017/jfm.2011.177
[34] DOI: 10.1243/JMES_JOUR_1980_022_043_02 · doi:10.1243/JMES_JOUR_1980_022_043_02
[35] J. Aero. Sci. 18 pp 490– (1951)
[36] Phil. Trans. R. Soc. Lond. A 223 pp 605– (1923)
[37] DOI: 10.1146/annurev.fluid.39.050905.110135 · doi:10.1146/annurev.fluid.39.050905.110135
[38] DOI: 10.1017/S0022112087002337 · doi:10.1017/S0022112087002337
[39] DOI: 10.1017/S0022112058000094 · Zbl 0079.40703 · doi:10.1017/S0022112058000094
[40] DOI: 10.1017/S0022112095002102 · doi:10.1017/S0022112095002102
[41] DOI: 10.1063/1.3139294 · Zbl 1183.76457 · doi:10.1063/1.3139294
[42] DOI: 10.1016/0021-9991(91)90139-C · Zbl 0718.76079 · doi:10.1016/0021-9991(91)90139-C
[43] Turbulent Flows (2001)
[44] DOI: 10.1146/annurev.fl.01.010169.001333 · doi:10.1146/annurev.fl.01.010169.001333
[45] DOI: 10.1063/1.3693146 · Zbl 06424292 · doi:10.1063/1.3693146
[46] DOI: 10.1109/TSMC.1979.4310076 · doi:10.1109/TSMC.1979.4310076
[47] DOI: 10.1017/S0022112010001758 · Zbl 1205.76020 · doi:10.1017/S0022112010001758
[48] DOI: 10.1146/annurev.fl.23.010191.002431 · doi:10.1146/annurev.fl.23.010191.002431
[49] DOI: 10.1017/S0022112006001340 · Zbl 1177.76136 · doi:10.1017/S0022112006001340
[50] Bull. Am. Phys. Soc. 10 pp 1323– (1971)
[51] DOI: 10.1017/S0022112005003800 · Zbl 1070.76024 · doi:10.1017/S0022112005003800
[52] DOI: 10.1017/S0022112076002747 · doi:10.1017/S0022112076002747
[53] DOI: 10.1017/jfm.2011.229 · Zbl 1241.76180 · doi:10.1017/jfm.2011.229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.