×

zbMATH — the first resource for mathematics

Large deviation principles for the stochastic quasi-geostrophic equations. (English) Zbl 1291.60133
Summary: In this paper we establish the large deviation principle for the stochastic quasi-geostrophic equation with small multiplicative noise in the subcritical case. The proof is mainly based on the weak convergence approach. Some analogous results are also obtained for the small time asymptotics of the stochastic quasi-geostrophic equation.

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60F10 Large deviations
35K55 Nonlinear parabolic equations
35Q86 PDEs in connection with geophysics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Barlow, M. T.; Yor, M., Semi-martingale inequalities via the garsia-rodemich-rumsey lemma, and applications to local time, J. Funct. Anal., 49, 198-229, (1982) · Zbl 0505.60054
[2] Boué, M.; Dupuis, P., A variational representation for certain functionals of Brownian motion, Ann. Probab., 26, 4, 1641-1659, (1998) · Zbl 0936.60059
[3] Budhiraja, A.; Dupuis, P., A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist., 20, 39-61, (2000) · Zbl 0994.60028
[4] Budhiraja, A.; Dupuis, P.; Maroulas, V., Large deviations for infinite dimensional stochastic dynamical systems, Ann. Probab., 36, 1390-1420, (2008) · Zbl 1155.60024
[5] Caffarelli, L.; Vasseur, A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171, 3, 1903-1930, (2010) · Zbl 1204.35063
[6] Chueshov, I.; Millet, A., Stochastic 2D hydrodynamical type systems: well posedness and large deviations, Appl. Math. Optim., 61, 379-420, (2010) · Zbl 1196.49019
[7] Constantin, P.; Majda, A.; Tabak, E., Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity, 7, 1495-1533, (1994) · Zbl 0809.35057
[8] Constantin, P.; Wu, J., Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30, 937-948, (1999) · Zbl 0957.76093
[9] Da Prato, G.; Zabczyk, J., Stochastic equations in infinite dimensions, (1992), Cambridge University Press · Zbl 0761.60052
[10] Davis, B., On the \(L^p\)-norms of stochastic integrals and other martingales, Duke Math. J., 43, 697-704, (1976) · Zbl 0349.60061
[11] Dembo, A.; Zeitouni, O., Large deviations techniques and applications, (1993), Jones and Bartlett Boston · Zbl 0793.60030
[12] Duan, J.; Millet, A., Large deviations for the Boussinesq equations under random influences, Stochastic Process. Appl., 119, 2052-2081, (2009) · Zbl 1163.60315
[13] Freidlin, M. I.; Wentzell, A. D., (Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 260, (1984), Springer-Verlag New York), Translated from the Russian by Joseph Szu”cs · Zbl 0522.60055
[14] Ju, N., Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Commun. Math. Phys., 251, 365-376, (2004) · Zbl 1106.35061
[15] Ju, N., On the two dimensional quasi-geostrophic equations, Indiana Univ. Math. J., 54, 3, 897-926, (2005) · Zbl 1185.35189
[16] Kiselev, A.; Nazarov, F.; Volberg, A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167, 445-453, (2007) · Zbl 1121.35115
[17] Krylov, N. V., Itô’s formula for the \(L_p\)-norm of stochastic \(W_p^1\)-valued processes, Probab. Theory Related Fields, 147, 583-605, (2010) · Zbl 1232.60050
[18] Liu, W., Large deviations for stochastic evolution equations with small multiplicative noise, Appl. Math. Optim., 61, 27-56, (2010) · Zbl 1387.60052
[19] Manna, U.; Sritharan, S. S.; Sundar, P., Large deviations for the stochastic shell model of turbulence, NoDEA Nonlinear Differential Equations Appl., 16, 493-521, (2009) · Zbl 1180.60023
[20] Pedlosky, J., Geophysical fluid dynamics, (1987), Springer-Verlag New York · Zbl 0713.76005
[21] Ren, J.; Zhang, X., Freidlin-wentzell’s large deviations for stochastic evolution equations, J. Funct. Anal., 254, 3148-3172, (2008) · Zbl 1143.60023
[22] S. Resnick, Dynamical problems in non-linear advective partial differential equations, Ph.D. Thesis, University of Chicago, Chicago, 1995.
[23] Röckner, M.; Zhu, R.-C.; Zhu, X.-C., Sub- and supercritical stochastic quasi-geostrophic equation · Zbl 1322.60121
[24] Sritharan, S. S.; Sundar, P., Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stochess Process. Appl., 116, 1636-1659, (2006) · Zbl 1117.60064
[25] Stein, E., Singular integrals and differentiability properties of functions, (1970), Princeton University Press Princeton, NJ · Zbl 0207.13501
[26] Stroock, D. W., An introduction to the theory of large deviations, (1984), Springer New York · Zbl 0552.60022
[27] Świȩch, A.; Zabczyk, J., Large deviations for stochastic PDE with Lévy noise, J. Funct. Anal., 260, 674-723, (2011) · Zbl 1211.60024
[28] Varadhan, S. R.S., Asymptotic probabilities and differential equations, Comm. Pure Appl. Math., 19, 261-286, (1966) · Zbl 0147.15503
[29] Varadhan, S. R.S., Diffusion processes in small time intervals, Comm. Pure Appl. Math., 20, 659-685, (1967) · Zbl 0278.60051
[30] Xu, T.; Zhang, T. S., On the small time asymptotics of the two-dimensional stochastic Navier-Stokes equations, Ann. Inst. Henri Poincaré Probab. Stat., 45, 4, 1002-1019, (2009) · Zbl 1196.60119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.