×

zbMATH — the first resource for mathematics

On delay-dependent stability conditions for Takagi-Sugeno fuzzy systems. (English) Zbl 1290.93130
Summary: This paper presents new less conservative stability analysis conditions for Takagi-Sugeno fuzzy systems subject to interval time-varying delay. The methodology is based on the direct Lyapunov method allied with an appropriate Lyapunov-Krasovskii functional choice and the use of the integral inequalities, Finsler lemma, Newton-Leibniz formula manipulations and convex combination properties. Particularly, the main result differs from previous ones since the positiveness of the Lyapunov-Krasovskii functional is guaranteed by new relaxed conditions. Two examples illustrate the effectiveness of the proposed methodology.

MSC:
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C42 Fuzzy control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gu, K.; Kharitonov, V.; Chen, J., Stability of time-delay systems, (2003), Birkhäuser Boston, MA · Zbl 1039.34067
[2] Zhang, J.; Xia, Y.; Shi, P.; Mahmoud, M., New results on stability and stabilisation of systems with interval time-varying delay, IET Control Theory & Applications, 5, 3, 429-436, (2011)
[3] Fei, Z.; Gao, H.; Zheng, W. X., New synchronization stability of complex networks with an interval time-varying coupling delay, IEEE Transactions on Circuits and Systems, 56, 6, 499-503, (2009)
[4] Souza, F. O.; Palhares, R. M.; Tôrres, L. A.B., Improved synthesis method for network-based control, International Journal of Systems Science, 42, 10, 1821-1830, (2011) · Zbl 1260.93059
[5] Tian, E.; Yue, D.; Zhang, Y., On improved delay-dependent robust \(H_\infty\) control for systems with interval time-varying delay, Journal of the Franklin Institute, 348, 4, 555-567, (2011) · Zbl 1227.93040
[6] Johansson, M.; Rantzer, A.; Arzen, K.-E., Piecewise quadratic stability of fuzzy systems, IEEE Transactions on Fuzzy Systems, 7, 6, 713-722, (1999)
[7] Tanaka, K.; Hori, T.; Wang, H., A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Transactions on Fuzzy Systems, 11, 4, 582-589, (2003)
[8] Rhee, B.-J.; Won, S., A new fuzzy Lyapunov function approach for a Takagi-sugeno fuzzy control system design, Fuzzy Sets and Systems, 157, 1211-1228, (2006) · Zbl 1090.93025
[9] Mozelli, L. A.; Palhares, R. M.; Avellar, G. S.C., A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, Information Sciences, 179, 1149-1162, (2009) · Zbl 1156.93355
[10] Tognetti, E. S.; Oliveira, R. C.L. F.; Peres, P. L.D., Selective H_2 and \(H_\infty\) stabilization of Takagi-sugeno fuzzy systems, IEEE Transactions on Fuzzy Systems, 19, 5, 890-900, (2011)
[11] Ko, J. W.; Park, P. G., Further enhancement of stability and stabilisability margin for Takagi-sugeno fuzzy systems, IET Control Theory & Applications, 6, 2, 313-318, (2012)
[12] Tanaka, k.; Wang, H. O., Fuzzy control systems design and analysisa linear matrix inequality approach, (2001), John Wiley and Sons
[13] Ramakrishnan, K.; Ray, G., Improved delay-range-dependent robust stability criteria for a class of lurè systems with sector-bounded nonlinearity, Journal of the Franklin Institute, 348, 8, 1769-1786, (2011) · Zbl 1231.93089
[14] Mozelli, L. A.; Souza, F. O.; Palhares, R. M., A new discretized Lyapunov-krasovskii functional for stability analysis and control design of time-delayed TS fuzzy systems, International Journal of Robust and Nonlinear Control, 1-13, (2010)
[15] Souza, F. O.; Mozelli, L. A.; Palhares, R. M., On stability and stabilization of TS fuzzy time-delayed systems, IEEE Transactions on Fuzzy Systems, 17, 6, 1450-1455, (2009)
[16] Tian, E.; Peng, C., Delay-dependent stability analysis and synthesis of uncertain T-S fuzzy systems with time-varying delay, Fuzzy Sets and Systems, 157, 544-559, (2006) · Zbl 1082.93031
[17] Lien, C. H.; Yu, K. W.; Chen, W. D.; Wan, Z. L.; Chung, Y. J., Stability criteria for uncertain Takagi-sugeno fuzzy systems with interval time-varying delay, IET Control Theory & Applications, 1, 3, 764-769, (2007)
[18] Tian, E.; Yue, D.; Zhang, Y., Delay-dependent robust \(H_\infty\) control for T-S fuzzy system with interval time-varying delay, Fuzzy Sets and Systems, 160, 1708-1719, (2009) · Zbl 1175.93134
[19] Peng, C.; Wen, L.-Y.; Yang, J.-Q., On delay-dependent robust stability criteria for uncertain T-S fuzzy systems with interval time-varying delay, International Journal of Fuzzy Systems, 13, 1, 35-44, (2011)
[20] Qian, W.; Cong, S.; Sun, Y.; Fei, S., Novel robust stability criteria for uncertain systems with time-varying delay, Applied Mathematics and Computation, 215, 2, 866-872, (2009) · Zbl 1192.34087
[21] Tanaka, K.; Ikeda, T.; Wang, H., Robust stabilization of a class of uncertain nonlinear systems via fuzzy controlquadratic stabilizability, \(H_\infty\) control theory, and linear matrix inequalities, IEEE Transactions on Fuzzy Systems, 4, 1, 1-13, (1996)
[22] Sun, J.; Liu, G. P.; Chien, J.; Rees, D., Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46, 466-470, (2010) · Zbl 1205.93139
[23] Sun, J.; Liu, G. P.; Chen, J.; Rees, D., Improved stability criteria for linear systems with time-varying delay, IET Control Theory & Applications, 4, 4, 683-689, (2010)
[24] Sun, J.; Chen, J., Delay-dependent stability and stabilization of neutral time-delay systems, International Journal of Robust and Nonlinear Control, 19, 1364-1375, (2009) · Zbl 1169.93399
[25] Mozelli, L.; Palhares, R.; Mendes, E., Equivalent techniques, extra comparisons and less conservative control design for Takagi-sugeno (TS) fuzzy systems, IET Control Theory & Applications, 4, 12, 2813-2822, (2010)
[26] He, Y.; Wu, M.; She, J. H.; Liu, G.-P., Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties, IEEE Transactions on Automatic Control, 49, 5, 828-832, (2004) · Zbl 1365.93368
[27] Yue, D.; Tian, E. G.; Wang, Z. D.; Lam, J., Stabilization of systems with probabilistic interval input delays and its applications to networked control systems, IEEE Transactions on Systems, Man and Cybernetics - Part A - Systems and Humans, 39, 4, 939-945, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.