zbMATH — the first resource for mathematics

Robust disturbance rejection in modified repetitive control system. (English) Zbl 1290.93055
Summary: This study concerns disturbance rejection for a Modified Repetitive Control System (MRCS) that contains a strictly proper plant with time-varying uncertainties. Since an MRCS is affected by both periodic and a-periodic disturbances, and since the disturbances are often unknown, an Equivalent-Input-Disturbance (EID)-based estimator is added to an MRCS to yield an EID-based MRCS that compensates for all types of disturbances. In this system, the repetitive controller ensures tracking of a periodic reference input, and the incorporation of an EID estimate into the control input enables rejection of unknown periodic and aperiodic disturbances. A robust stability condition for the MRCS is established in form of a linear matrix inequality, and the condition is used to design the parameters of the controller. This design method handles uncertainties and enables the preferential adjustment of the tracking and control performance of the MRCS. Simulation results demonstrate the validity of the method.

93B35 Sensitivity (robustness)
93C73 Perturbations in control/observation systems
Full Text: DOI
[1] T. Inoue, M. Nakano, S. Iwai, High accuracy control of a proton synchrotron magnet power supply, in: Proceedings of the 8th World Congress of IFAC, Kyoto, Japan, 1981, pp. 3137-3142.
[2] Srinivasan, K.; Shaw, F.-R., Analysis and design of repetitive control systems using regeneration spectrum, J. Dyn. Syst. Meas. Control, 113, 216-222, (1991)
[3] Chew, K. K.; Tomizuka, M., Digital control of repetitive errors in disk drive systems, IEEE Trans. Control Syst. Mag., 10, 16-20, (1990)
[4] Hara, S.; Yamamoto, Y.; Omata, T.; Nakano, M., Repetitive control system: a new type servo system for periodic exogenous signals, IEEE Trans. Automat. Control, 37, 659-668, (1988) · Zbl 0662.93027
[5] M. Ikeda, M. Takano, Repetitive control for systems with nonzero relative degree, in: Proceedings of the 29th Conference on Decision and Control. Honolulu, Hawali, 1990, pp. 1667-1672.
[6] Pipeleers, G.; Demeulenaere, B.; Schutter, J.-D.; Swevers, J., Generalised repetitive control: relaxing the period-delay-based structure, IET Control Theory Appl., 3, 1528-1536, (2009)
[7] Hu, C.-X.; Yao, B.; Chen, Z.; Wang, Q.-F., Adaptive robust repetitive control of an industrial biaxial precision gantry for contouring tasks, IEEE Trans. Control Syst. Technol., 19, 1559-1568, (2011)
[8] Chung, C.-H.; Chen, M.-S., A robust adaptive feedforward control in repetitive control design for linear systems, Automatica, 48, 183-190, (2012) · Zbl 1244.93041
[9] Tan, K. K.; Huang, S. N.; Lee, T. H.; Tay, A., Disturbance compensation incorporated in predictive control system using a repetitive learning approach, Systems Control Lett., 56, 75-82, (2007) · Zbl 1120.93320
[10] Chen, X.; Fukuda, T.; Young, K. D., A new nonlinear robust disturbance observer, Systems Control Lett., 41, 189-199, (2000) · Zbl 0986.93045
[11] T. Miyazaki, K. Ohishi, I. Shibutani, D. Koide, H. Tokumaru, Robust tracking control of optical disk recording system based on sudden disturbance observer, in: The 32nd Annual Conference of the IEEE Industrial Electronics Society, Paris, France, 2006, pp. 5215-5220.
[12] Pipeleers, G.; Demeulenaere, B.; Schutter, J.-D.; Swevers, J., Robust high-order repetitive control: optimal performance trade-offs, Automatica, 40, 2628-2634, (2008) · Zbl 1155.93345
[13] She, J.; Fang, M. X.; Ohyama, Y.; Kobayashi, H.; Wu, M., Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Trans. Ind. Electron., 55, 380-389, (2008)
[14] Liu, R. J.; Wu, M.; Liu, G. P.; She, J.; Thomas, C., Active disturbance rejection control based on an improved equivalent-input-disturbance approach, IEEE/ASME Trans. Mechatronics, 18, 1410-1413, (2013)
[15] Liu, R.-J.; Liu, G.-P.; Wu, M.; Xiao, F.-C.; She, J., Robust disturbance rejection based on the equivalent-input-disturbance approach, IET Control Theory Appl., 7, 1261-1268, (2013)
[16] Liu, R.-J.; Liu, G.-P.; Wu, M.; Nie, Z.-Y., Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach, J. Franklin Inst., 6, 3364-3377, (2014) · Zbl 1290.93054
[17] Zhou, K.; Doyle, J. C.; Glover, K., Robust and optimal control, (1995), Prentice Hall
[18] Doh, T.-Y.; Chung, M. J., Repetitive control design for linear systems with time-varying uncertainties, IEE Proc., Control Theory Appl., 150, 427-432, (2003)
[19] Zhou, L.; She, J.; Wu, M.; He, Y., Design of a robust observer-based modified repetitive-control system, ISA Trans., 52, 375-382, (2013)
[20] Yuan, S.-G.; Wu, M.; Xu, B.-G.; Liu, R.-J., Design of discrete-time repetitive control system based on two-dimensional model, Int. J. Autom. Comput., 9, 165-170, (2012)
[21] Tian, Y.-C.; Gao, F., Double-controller scheme for control of processes with dominant delay, IEE Proc., Control Theory Appl., 145, 479-484, (1998)
[22] Hunt, L.-R.; Meyer, G.; Su, R., Noncausal inverses for linear systems, IEEE Trans. Automat. Control, 41, 608-611, (1996) · Zbl 0864.93055
[23] Han, J., From PID to active disturbance rejection control, IEEE Trans. Ind. Electron., 3, 900-906, (2009)
[24] Z. Gao, Scaling and bandwidth-parameterization based controller tuning, in: Proceedings of the American Control Conference, June, 2003, pp. 4989-4996.
[25] Yakubovich, V.-A., S-procedure in nonlinear control theory, (1971), Veslnin Leningrad, Vestnik Leningrad University · Zbl 0232.93010
[26] Khargonek, P.-P.; Petersen, I.-R.; Zhou, K., Robust stabilization of uncertain linear systems: quadratic stabilizability and \(H \infty\) control theory, IEEE Trans. Automat. Control, 35, 356-361, (1990) · Zbl 0707.93060
[27] Ho, D.-W.-C.; Lu, G., Robust stabilization for a class of discrete-time nonlinear system via output feedback: the unified LMI approach, Internat. J. Control, 76, 105-115, (2003) · Zbl 1026.93048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.