zbMATH — the first resource for mathematics

Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach. (English) Zbl 1290.93054
Summary: This paper presents a disturbance rejection method for time-delay systems. The configuration of the control system is constructed based on the equivalent-input-disturbance (EID) approach. A modified state observer is applied to reconstruct the state of the time-delay plant. A disturbance estimator is designed to actively compensate for the disturbances. Under such a construction of the system, both matched and unmatched disturbances are rejected effectively without requiring any prior knowledge of the disturbance or inverse dynamics of the plant. The presentation of the closed-loop system is derived for the stability analysis and controller design. Simulation results demonstrate the validity and superiority of the proposed method.

93B35 Sensitivity (robustness)
93C73 Perturbations in control/observation systems
Full Text: DOI
[1] Richard, J. P., Time-delay system: an overview of some recent advances and open problems, Automatica, 39, 10, 1667-1694, (2003) · Zbl 1145.93302
[2] Smith, O. J.M., A controller to overcome dead time, ISA J. Instrum. Soc. Am., 6, 28-33, (1959)
[3] García, P.; Albertos, P., A new dead-time compensator to control stable and integrating processes with long time, Automatica, 44, 1062-1071, (2008) · Zbl 1283.93220
[4] Yang, R.; Shi, P.; Liu, G.-P., Filtering for discrete-time networked nonlinear systems with mixed random delays and packet dropouts, IEEE Trans. Autom. Control, 56, 2655-2660, (2011) · Zbl 1368.93734
[5] Utkin, V. I., Sliding modes in control and optimizations, (1992), Springer-Verlag Germany · Zbl 0748.93044
[6] Hu, J.; Wang, Z.; Gao, H.; Stergioulas, L. K., Robust \(H_\infty\) sliding mode control for discrete time-delay systems with stochastic nonlinearities, J. Frankl. Inst., 349, 1459-1479, (2012) · Zbl 1254.93043
[7] K. Gu, S.I. Niculescu, Stability analysis of time-delay systems: a Lyapunov approach, in: Advanced Topics in Control Systems Theory, Lecture Notes in Control and Information Sciences, vol. 328, 2006, pp. 139-170. · Zbl 1217.93069
[8] Zhang, W. D.; Sun, Y. X.; Xu, X. M., Two degree-of-freedom Smith predictor for processes with time delay, Automatica, 34, 10, 1279-1282, (1998) · Zbl 0942.93012
[9] Xia, Y.; Fu, M.; Shi, P.; Wang, M., Robust sliding mode control for uncertain discrete-time systems with time delay, IET Control Theory Appl., 4, 4, 613-624, (2010)
[10] Yue, H. Y.; Li, J. M., Adaptive fuzzy dynamic surface control for a class of perturbed nonlinear time-varying delay systems with unknown dead-zone, Int. J. Autom. Comput., 9, 5, 545-554, (2012)
[11] Li, Z.; Xia, Y.; Cao, X., Adaptive control of bilateral teleoperation with unsymmetrical time-varying delays, Int. J. Innov. Comput. Inf. Control, 9, 753-767, (2013)
[12] Nizar, A.; Houda, B. M.; Said, N. A., A new sliding function for discrete predictive sliding mode control of time delay systems, Int. J. Autom. Comput., 10, 288-295, (2013)
[13] Han, J. Q., From PID to active disturbance rejection control, IEEE Trans. Ind. Electron., 56, 3, 900-906, (2009)
[14] Xia, Y.; Shi, P.; Liu, G. P.; Rees, D.; Han, J., Active disturbance rejection control for uncertain multivariable systems with time-delay, IET Control Theory Appl., 1, 1, 75-81, (2007)
[15] Zhao, S.; Gao, Z., Modified active disturbance rejection control for time-delay systems, ISA Trans., (2013), , http://dx.doi.org/10.1016/j.isatra.2013.09.013
[16] H.W. Gao, G.Y. Tang, C. Li, Optimal disturbance rejection with zero steady-state error for time-delay systems, in: Proceedings of the 6th World Congress on Intelligent Control and Automation, China, 2006, pp. 511-515.
[17] Yang, J.; Li, S.; Chen, X.; Li, Q., Disturbance rejection of dead-time processes using disturbance observer and model predictive control, Chem. Eng. Res. Des., 89, 125-135, (2011)
[18] She, J.; Fang, M. X.; Ohyama, Y.; Kobayashi, H.; Wu, M., Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Trans. Ind. Electron., 55, 1, 380-389, (2008)
[19] Liu, R. J.; Wu, M.; Liu, G. P.; She, J.; Thomas, C., Active disturbance rejection control based on an improved equivalent-input-disturbance approach, IEEE/ASME Trans. Mechatron., 18, 4, 1410-1413, (2013)
[20] Leyva-Ramos, J.; Rearson, A. E., An asymptotic modal observer for linear autonomous time lag systems, IEEE Trans. Autom. Control, 40, 7, 1291-1294, (1995) · Zbl 0825.93084
[21] Sun, Y.; Ulsoy, A. G.; Nelson, P. W., Design of observer-based feedback control for time-delay systems with application to automotive powertrain control, J. Frankl. Inst., 347, 358-376, (2010) · Zbl 1298.93173
[22] Chen, J. D., Robust \(H_\infty\) output dynamic observer-based control of uncertain time-delay systems, Chaos Solitons Fractals, 31, 391-403, (2007) · Zbl 1142.93329
[23] Young, K. D.; Utkin, V. I.; Ozgiiner, D., A control engineer׳s guide to sliding mode control, IEEE Trans. Control Syst. Technol., 7, 3, 328-342, (1999)
[24] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of time-delay systems (control engineering), (2003), Springer-Verlag New York
[25] Wu, M.; He, Y.; She, J.; Liu, G. P., Delay-dependent criteria for robust stability of time-varying delay systems, Automatica, 40, 1435-1439, (2004) · Zbl 1059.93108
[26] L, P.-L., Delay-dependent robust stability analysis for recurrent neural networks with time-varying delay, Int. J. Innov. Comput. Inf. Control, 9, 3341-3355, (2013)
[27] J. She, Y. Pan, H. Hashimoto, M. Wu, Comparison of disturbance rejection performance between sliding-mode control and equivalent-input-disturbance approach, in: Proceedings of IEEE International Conference on Mechatronics, Turkey, 2011, pp. 949-954.
[28] Zheng, D. Z., Linear system theory, (2002), Springer, Tsinghua University Press, Beijing
[29] Ho, D. W.C.; Lu, G., Robust stabilization for a class of discrete-time nonlinear system via output feedback: the unified LMI approach, Int. J. Control, 76, 7, 105-115, (2003) · Zbl 1026.93048
[30] Khargonek, P. P.; Petersen, I. R.; Zhou, K., Robust stabilization of uncertain linear systems: quadratic stabilizability and \(H_\infty\) control theory, IEEE Trans. Autom. Control, 35, 3, 356-361, (1990) · Zbl 0707.93060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.