×

Optimal reinsurance in the presence of counterparty default risk. (English) Zbl 1290.91074

Summary: The optimal reinsurance arrangement is identified whenever the reinsurer counterparty default risk is incorporated in a one-period model. Our default risk model allows the possibility for the reinsurer to fail paying in full the promised indemnity, whenever it exceeds the level of regulatory capital. We also investigate the change in the optimal solution if the reinsurance premium recognises or not the default in payment. Closed form solutions are elaborated when the insurer’s objective function is set via some well-known risk measures. It is also discussed the effect of reinsurance over the policyholder welfare. If the insurer is value-at-risk regulated, then the reinsurance does not increase the policyholder’s exposure for any possible reinsurance transfer, even if the reinsurer may default in paying the promised indemnity. Numerical examples are also provided in order to illustrate and conclude our findings. It is found that the optimal reinsurance contract does not usually change if the counterparty default risk is taken into account, but one should consider this effect in order to properly measure the policyholders exposure. In addition, the counterparty default risk may change the insurer’s ideal arrangement if the buyer and seller have very different views on the reinsurer’s recovery rate.

MSC:

91B30 Risk theory, insurance (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Acerbi, C., Spectral measure of risks: a coherent representation of subjective risk aversion, Journal of Banking & Finance, 26, 7, 1505-1518, (2002)
[2] Acerbi, C.; Tasche, D., On the coherence of expected shortfall, Journal of Banking & Finance, 26, 7, 1487-1503, (2002)
[3] Arrow, K. J., Uncertainty and the welfare economics of medical care, American Economic Review, 53, 5, 941-973, (1963)
[4] Asimit, A. V.; Badescu, A. M.; Tsanakas, A., Optimal risk transfers in insurance groups, European Actuarial Journal, 3, 1, 159-190, (2013) · Zbl 1270.91028
[5] Asimit, A. V.; Badescu, A. M.; Verdonck, T., Optimal risk transfer under quantile-based risk measurers, Insurance: Mathematics & Economics, 53, 1, 252-265, (2013) · Zbl 1284.91199
[6] Bellini, F.; Rosazza Gianin, E., Haezendonck-goovaerts risk measures and Orlicz quantiles, Insurance: Mathematics & Economics, 51, 1, 107-114, (2012) · Zbl 1284.91205
[7] Bernard, C.; Ludkovski, M., Impact of counterparty risk on the reinsurance market, North American Actuarial Journal, 16, 1, 87-111, (2012) · Zbl 1291.91091
[8] Biffis, E., Millossovich, P., 2012. Optimal insurance with counterparty default risk. Working Paper. Available at http://ssrn.com/abstract=1634883.
[9] Bogachev, V., Measure theory, (2007), Springer-Verlag Berlin · Zbl 1120.28001
[10] Borch, K., 1960. An attempt to determine the optimum amount of stop loss reinsurance. In: Transactions of the 16th International Congress of Actuaries, vol. I, pp. 597-610.
[11] Butsic, R. P., Solvency measurement for property-liability risk-based capital applications, Journal of Risk and Insurance, 61, 4, 656-690, (1994)
[12] Cai, J.; Tan, K. S.; Weng, C.; Zhang, Y., Optimal reinsurance under var and CTE risk measures, Insurance: Mathematics & Economics, 43, 1, 185-196, (2008) · Zbl 1140.91417
[13] Centeno, M. L.; Guerra, M., The optimal reinsurance strategy—the individual claim case, Insurance: Mathematics & Economics, 46, 3, 450-460, (2010) · Zbl 1231.91151
[14] Cheung, K. C., Optimal reinsurer revisited—a geometric approach, Astin Bulletin, 40, 1, 221-239, (2010) · Zbl 1230.91070
[15] Cheung, K. C.; Sung, K. C.J.; Yam, S. C.P.; Yung, S. P., Optimal reinsurance under general law-invariant risk measures, Scandinavian Actuarial Journal, (2011), (in press) · Zbl 1401.91110
[16] Chi, Y.; Tan, K. S., Optimal reinsurance under var and CVaR risk measures: a simplified approach, Astin Bulletin, 42, 2, 487-509, (2011) · Zbl 1239.91078
[17] Cui, W., Yang, J., Wu, L., 2012. Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles. Preprint. · Zbl 1284.91222
[18] Dana, R.-A.; Scarsini, M., Optimal risk sharing with background risk, Journal of Economic Theory, 133, 1, 152-176, (2007) · Zbl 1280.91092
[19] Denuit, M.; Dhaene, J.; Goovaerts, M. J.; Kaas, R., Actuarial theory for dependent risks: measures, orders and models, (2005), Wiley Chichester
[20] Dhaene, J.; Denuit, M.; Goovaerts, M. J.; Kaas, R.; Vyncke, D., The concept of comonotonicity in actuarial science and finance: theory, Insurance: Mathematics & Economics, 31, 1, 3-33, (2002) · Zbl 1051.62107
[21] Dhaene, J.; Denuit, M.; Goovaerts, M. J.; Kaas, R.; Vyncke, D., The concept of comonotonicity in actuarial science and finance: applications, Insurance: Mathematics & Economics, 31, 2, 133-161, (2002) · Zbl 1037.62107
[22] Dhaene, J.; Kukush, A.; Linders, D.; Tang, Q., Remarks on quantiles and distortion risk measures, European Actuarial Journal, 2, 2, 319-328, (2012) · Zbl 1256.91027
[23] Goovaerts, M. J.; Kaas, R.; Dhaene, J.; Tang, Q., Some new classes of consistent risk measures, Insurance: Mathematics & Economics, 34, 3, 505-516, (2004) · Zbl 1188.91087
[24] Goovaerts, M. J.; Linders, D.; Van Weert, K.; Tank, F., On the interplay between distortion, mean value and haezendonck-goovaerts risk measures, Insurance: Mathematics & Economics, 51, 1, 10-18, (2012) · Zbl 1284.91235
[25] Guerra, M.; Centeno, M. L., Optimal reinsurance policy: the adjustment coefficient and the expected utility criteria, Insurance: Mathematics & Economics, 42, 2, 529-539, (2008) · Zbl 1152.91583
[26] Guerra, M.; Centeno, M. L., Optimal reinsurance for variance related premium calculation principles, Astin Bulletin, 40, 1, 97-121, (2010) · Zbl 1230.91073
[27] Haezendonck, J.; Goovaerts, M. J., A new premium calculation principle based on Orlicz norms, Insurance: Mathematics & Economics, 1, 1, 41-53, (1982) · Zbl 0495.62091
[28] Jones, B. L.; Zitikis, R., Empirical estimation of risk measures and related quantities, North American Actuarial Journal, 7, 4, 44-54, (2003) · Zbl 1084.62537
[29] Kaluszka, M., Optimal reinsurance under mean-variance premium principles, Insurance: Mathematics & Economics, 28, 1, 61-67, (2001) · Zbl 1009.62096
[30] Kaluszka, M., Truncated stop loss as optimal reinsurance agreement in one-period models, Astin Bulletin, 35, 2, 337-349, (2005) · Zbl 1156.62363
[31] Kaluszka, M.; Okolewski, A., An extension of arrow’s result on optimal reinsurance contract, The Journal of Risk and Insurance, 75, 2, 275-288, (2008)
[32] Ludkovski, M.; Young, V. R., Optimal risk sharing under distorted probabilities, Mathematics and Financial Economics, 2, 2, 87-105, (2009) · Zbl 1255.91182
[33] Myers, S. C.; Read, J. A., Capital allocation for insurance companies, Journal of Risk and Insurance, 68, 4, 545-580, (2001)
[34] Phillips, R. D.; Cummins, J. D.; Allen, F., Financial pricing of insurance in the multiple-line insurance company, Journal of Risk and Insurance, 65, 4, 597-636, (1998)
[35] Van Heerwaarden, A. E.; Kaas, R.; Goovaerts, M. J., Optimal reinsurer in the relation to ordering of risk, Insurance: Mathematics & Economics, 8, 1, 11-17, (1989) · Zbl 0683.62060
[36] Verlaak, R.; Beirlant, J., Optimal reinsurance programs: an optimal combination of several reinsurance protections on a heterogeneous insurance portfolio, Insurance: Mathematics & Economics, 33, 2, 381-403, (2003) · Zbl 1103.91376
[37] Wang, S., A class of distortion operators for pricing financial and insurance risks, Journal of Risk and Insurance, 67, 1, 15-36, (2000)
[38] Wang, S.; Young, V. R., Ordering risks: expected utility theory versus yaari’s dual theory of risk, Insurance: Mathematics & Economics, 22, 2, 145-161, (1998) · Zbl 0907.90102
[39] Young, V. R., Optimal insurance under wang’s premium principle, Insurance: Mathematics & Economics, 25, 2, 109-122, (1999) · Zbl 1156.62364
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.