×

zbMATH — the first resource for mathematics

A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. (English) Zbl 1290.81155
Summary: In this work we illustrate the POWHEG BOX, a general computer code framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. Aim of this work is to provide an illustration of the needed theoretical ingredients, a view of how the code is organized and a description of what a user should provide in order to use it.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
65C05 Monte Carlo methods
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Nason, P., A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP, 11, 040, (2004)
[2] Frixione, S.; Nason, P.; Oleari, C., Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP, 11, 070, (2007)
[3] Nason, P.; Ridolfi, G., A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP, 08, 077, (2006)
[4] Frixione, S.; Nason, P.; Ridolfi, G., A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP, 09, 126, (2007)
[5] Latunde-Dada, O.; Gieseke, S.; Webber, B., A positive-weight next-to-leading-order Monte Carlo for \(e\)\^{}{+}\(e\)\^{}{−} annihilation to hadrons, JHEP, 02, 051, (2007)
[6] Latunde-Dada, O., Applying the POWHEG method to top pair production and decays at the ILC, Eur. Phys. J., C 58, 543, (2008)
[7] Alioli, S.; Nason, P.; Oleari, C.; Re, E., NLO vector-boson production matched with shower in POWHEG, JHEP, 07, 060, (2008)
[8] Hamilton, K.; Richardson, P.; Tully, J., A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP, 10, 015, (2008)
[9] Papaefstathiou, A.; Latunde-Dada, O., NLO production of W′ bosons at hadron colliders using the MC@NLO and POWHEG methods, JHEP, 07, 044, (2009)
[10] Alioli, S.; Nason, P.; Oleari, C.; Re, E., NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP, 04, 002, (2009)
[11] Hamilton, K.; Richardson, P.; Tully, J., A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production, JHEP, 04, 116, (2009)
[12] Alioli, S.; Nason, P.; Oleari, C.; Re, E., NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP, 09, 111, (2009)
[13] S. Alioli, P. Nason, C. Oleari and E. Re, NLO Z + 1 jet production matched with shower in POWHEG, to appear soon.
[14] Nason, P.; Oleari, C., NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP, 02, 037, (2010)
[15] Frixione, S.; Webber, BR, Matching NLO QCD computations and parton shower simulations, JHEP, 06, 029, (2002)
[16] Corcella, G.; etal., HERWIG 6.5: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP, 01, 010, (2001)
[17] G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].
[18] Sjöstrand, T.; Mrenna, S.; Skands, PZ, PYTHIA 6.4 physics and manual, JHEP, 05, 026, (2006)
[19] Frederix, R.; Gehrmann, T.; Greiner, N., Automation of the dipole subtraction method in madgraph/madevent, JHEP, 09, 122, (2008)
[20] K. Hasegawa, S. Moch and P. Uwer, AutoDipole - Automated generation of dipole subtraction terms, arXiv:0911.4371 [SPIRES].
[21] T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, arXiv:1001.1307 [SPIRES].
[22] Hahn, T.; Pérez-Victoria, M., Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun., 118, 153, (1999)
[23] Kurihara, Y.; etal., QCD event generators with next-to-leading order matrix-elements and parton showers, Nucl. Phys., B 654, 301, (2003)
[24] Bélanger, G.; etal., Automatic calculations in high energy physics and grace at one-loop, Phys. Rept., 430, 117, (2006)
[25] Ellis, RK; Giele, WT; Kunszt, Z., A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP, 03, 003, (2008)
[26] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[27] Binoth, T.; Guillet, JP; Heinrich, G.; Pilon, E.; Reiter, T., Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun., 180, 2317, (2009)
[28] Berger, CF; etal., An automated implementation of on-shell methods for one- loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[29] A. Lazopoulos, Multi-gluon one-loop amplitudes numerically, arXiv:0812.2998 [SPIRES].
[30] J.-C. Winter and W.T. Giele, Calculating gluon one-loop amplitudes numerically, arXiv:0902.0094 [SPIRES].
[31] Particle Data Group collaboration; Amsler, C.; etal., Review of particle physics, Phys. Lett., B 667, 1, (2008)
[32] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP, 10, 003, (2009)
[33] Kunszt, Z.; Signer, A.; Trócsányi, Z., One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys., B 411, 397, (1994)
[34] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[35] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[36] Frixione, S., A general approach to jet cross-sections in QCD, Nucl. Phys., B 507, 295, (1997)
[37] P. Nason, MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions, arXiv:0709.2085 [SPIRES].
[38] E. Boos et al., Generic user process interface for event generators, hep-ph/0109068 [SPIRES].
[39] R. Frederix, private communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.