×

A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. (English) Zbl 1290.81155

Summary: In this work we illustrate the POWHEG BOX, a general computer code framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. Aim of this work is to provide an illustration of the needed theoretical ingredients, a view of how the code is organized and a description of what a user should provide in order to use it.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
65C05 Monte Carlo methods
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [SPIRES].
[2] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [SPIRES].
[3] P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP08 (2006) 077 [hep-ph/0606275] [SPIRES].
[4] S. Frixione, P. Nason and G. Ridolfi, A Positive-Weight Next-to-Leading-Order Monte Carlo for Heavy Flavour Hadroproduction, JHEP09 (2007) 126 [arXiv:0707.3088] [SPIRES].
[5] O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte Carlo for e+e−annihilation to hadrons, JHEP02 (2007) 051 [hep-ph/0612281] [SPIRES].
[6] O. Latunde-Dada, Applying the POWHEG method to top pair production and decays at the ILC, Eur. Phys. J.C 58 (2008) 543 [arXiv:0806.4560] [SPIRES].
[7] S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP07 (2008) 060 [arXiv:0805.4802] [SPIRES].
[8] K. Hamilton, P. Richardson and J. Tully, A Positive-Weight Next-to-Leading Order Monte Carlo Simulation of Drell-Yan Vector Boson Production, JHEP10 (2008) 015 [arXiv:0806.0290] [SPIRES].
[9] A. Papaefstathiou and O. Latunde-Dada, NLO production of W′ bosons at hadron colliders using the MC@NLO and POWHEG methods, JHEP07 (2009) 044 [arXiv:0901.3685] [SPIRES].
[10] S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP04 (2009) 002 [arXiv:0812.0578] [SPIRES].
[11] K. Hamilton, P. Richardson and J. Tully, A Positive-Weight Next-to-Leading Order Monte Carlo Simulation for Higgs Boson Production, JHEP04 (2009) 116 [arXiv:0903.4345] [SPIRES].
[12] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP09 (2009) 111 [arXiv:0907.4076] [SPIRES].
[13] S. Alioli, P. Nason, C. Oleari and E. Re, NLO Z + 1 jet production matched with shower in POWHEG, to appear soon. · Zbl 1290.81155
[14] P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP02 (2010) 037 [arXiv:0911.5299] [SPIRES]. · Zbl 1270.81219
[15] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [SPIRES].
[16] G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP01 (2001) 010 [hep-ph/0011363] [SPIRES].
[17] G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].
[18] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP05 (2006) 026 [hep-ph/0603175] [SPIRES]. · Zbl 1368.81015
[19] R. Frederix, T. Gehrmann and N. Greiner, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, JHEP09 (2008) 122 [arXiv:0808.2128] [SPIRES].
[20] K. Hasegawa, S. Moch and P. Uwer, AutoDipole - Automated generation of dipole subtraction terms, arXiv:0911.4371 [SPIRES]. · Zbl 1219.81244
[21] T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, arXiv:1001.1307 [SPIRES]. · Zbl 1219.82008
[22] T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [SPIRES].
[23] Y. Kurihara et al., QCD event generators with next-to-leading order matrix-elements and parton showers, Nucl. Phys.B 654 (2003) 301 [hep-ph/0212216] [SPIRES]. · Zbl 1010.81511
[24] G. Bélanger et al., Automatic calculations in high energy physics and Grace at one-loop, Phys. Rept.430 (2006) 117 [hep-ph/0308080] [SPIRES].
[25] R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [SPIRES].
[26] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [SPIRES].
[27] T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun.180 (2009) 2317 [arXiv:0810.0992] [SPIRES]. · Zbl 1197.81004
[28] C.F. Berger et al., An Automated Implementation of On-Shell Methods for One- Loop Amplitudes, Phys. Rev.D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].
[29] A. Lazopoulos, Multi-gluon one-loop amplitudes numerically, arXiv:0812.2998 [SPIRES].
[30] J.-C. Winter and W.T. Giele, Calculating gluon one-loop amplitudes numerically, arXiv:0902.0094 [SPIRES].
[31] Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett.B 667 (2008) 1 [SPIRES].
[32] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [SPIRES].
[33] Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys.B 411 (1994) 397 [hep-ph/9305239] [SPIRES].
[34] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [hep-ph/9605323] [SPIRES].
[35] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [SPIRES].
[36] S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys.B 507 (1997) 295 [hep-ph/9706545] [SPIRES].
[37] P. Nason, MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions, arXiv:0709.2085 [SPIRES].
[38] E. Boos et al., Generic user process interface for event generators, hep-ph/0109068 [SPIRES].
[39] R. Frederix, private communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.