×

Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level. (English) Zbl 1290.81151

Summary: SAMURAI is a tool for the automated numerical evaluation of one-loop corrections to any scattering amplitudes within the dimensional-regularization scheme. It is based on the decomposition of the integrand according to the OPP-approach, extended to accommodate an implementation of the generalized \(d\)-dimensional unitarity-cuts technique, and uses a polynomial interpolation exploiting the Discrete Fourier Transform. SAMURAI can process integrands written either as numerator of Feynman diagrams or as product of tree-level amplitudes. We discuss some applications, among which the 6-and 8-photon scattering in QED, and the 6-quark scattering in QCD. SAMURAI has been implemented as a Fortran90 library, publicly available, and it could be a useful module for the systematic evaluation of the virtual corrections oriented towards automating next-to-leading order calculations relevant for the LHC phenomenology.

MSC:

81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81V22 Unified quantum theories
81U05 \(2\)-body potential quantum scattering theory
81T18 Feynman diagrams
81V10 Electromagnetic interaction; quantum electrodynamics
81V05 Strong interaction, including quantum chromodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun.81 (1994) 357 [hep-ph/9401258] [SPIRES].
[2] F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP02 (2003) 027 [hep-ph/0208156] [SPIRES].
[3] J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP09 (2007) 028 [arXiv:0706.2334] [SPIRES].
[4] CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth.A 534 (2004) 250 [hep-ph/0403113] [SPIRES].
[5] A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
[6] T. Gleisberg et al., SHERPA 1.alpha, a proof-of-concept version, JHEP02 (2004) 056 [hep-ph/0311263] [SPIRES].
[7] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP02 (2009) 007 [arXiv:0811.4622] [SPIRES].
[8] W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
[9] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP07 (2003) 001 [hep-ph/0206293] [SPIRES].
[10] A. Kanaki and C.G. Papadopoulos, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun.132 (2000) 306 [hep-ph/0002082] [SPIRES]. · Zbl 1031.81507
[11] A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun.180 (2009) 1941 [arXiv:0710.2427] [SPIRES].
[12] J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev.D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].
[13] J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W+2 jet and Z+2 jet production at hadron colliders, Phys. Rev.D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].
[14] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev.D 68 (2003) 094002 [hep-ph/0307268] [SPIRES].
[15] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [SPIRES].
[16] S. Frixione and B.R. Webber, The MC@NLO 3.3 event generator, hep-ph/0612272 [SPIRES].
[17] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [SPIRES].
[18] P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP08 (2006) 077 [hep-ph/0606275] [SPIRES].
[19] O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte Carlo for e+e−annihilation to hadrons, JHEP02 (2007) 051 [hep-ph/0612281] [SPIRES].
[20] S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP09 (2007) 126 [arXiv:0707.3088] [SPIRES].
[21] S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POW HEG, JHEP07 (2008) 060 [arXiv:0805.4802] [SPIRES].
[22] K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP10 (2008) 015 [arXiv:0806.0290] [SPIRES].
[23] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [SPIRES]. · Zbl 1290.81155
[24] W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e+e−annihilation, Phys. Rev.D 46 (1992) 1980 [SPIRES].
[25] R.K. Ellis, D.A. Ross and A.E. Terrano, The perturbative calculation of jet structure in e+e−annihilation, Nucl. Phys.B 178 (1981) 421 [SPIRES].
[26] Z. Kunszt and D.E. Soper, Calculation of jet cross-sections in hadron collisions at order alpha-S3, Phys. Rev.D 46 (1992) 192 [SPIRES].
[27] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [SPIRES].
[28] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [SPIRES].
[29] S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys.B 627 (2002) 189 [hep-ph/0201036] [SPIRES]. · Zbl 0990.81140
[30] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J.C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].
[31] M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
[32] M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP08 (2009) 085 [arXiv:0905.0883] [SPIRES].
[33] K. Hasegawa, S. Moch and P. Uwer, AutoDipole - automated generation of dipole subtraction terms, arXiv:0911.4371 [SPIRES]. · Zbl 1219.81244
[34] R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP09 (2008) 122 [arXiv:0808.2128] [SPIRES].
[35] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [SPIRES].
[36] R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP06 (2010) 086 [arXiv:1004.2905] [SPIRES]. · Zbl 1288.81145
[37] D.A. Kosower, Antenna factorization of gauge-theory amplitudes, Phys. Rev.D 57 (1998) 5410 [hep-ph/9710213] [SPIRES].
[38] J.M. Campbell, M.A. Cullen and E.W.N. Glover, Four jet event shapes in electron positron annihilation, Eur. Phys. J.C 9 (1999) 245 [hep-ph/9809429] [SPIRES].
[39] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [SPIRES].
[40] A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [SPIRES].
[41] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys.B 734 (2006) 62 [hep-ph/0509141] [SPIRES]. · Zbl 1192.81158
[42] A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e+e− → 4 fermion processes: technical details and further results, Nucl. Phys.B 724 (2005) 247 [hep-ph/0505042] [SPIRES].
[43] C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [SPIRES].
[44] C.F. Berger et al., Next-to-leading Order QCD predictions for W+3-jet distributions at hadron colliders, Phys. Rev.D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].
[45] R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W+3jet production, JHEP04 (2009) 077 [arXiv:0901.4101] [SPIRES].
[46] R. Keith Ellis, K. Melnikov and G. Zanderighi, W+3 jet production at the Tevatron, Phys. Rev.D 80 (2009) 094002 [arXiv:0906.1445] [SPIRES].
[47] C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ+3-jet distributions at the Tevatron, arXiv:1004.1659 [SPIRES].
[48] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \(pp \to t\bar{t}b\bar{b} + X\) at the LHC, Phys. Rev. Lett.103 (2009) 012002 [arXiv:0905.0110] [SPIRES].
[49] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP03 (2010) 021 [arXiv:1001.4006] [SPIRES]. · Zbl 1271.81172
[50] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, A ssault on the NLO wishlist: pp → ttbb, JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES].
[51] G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in higgs boson analyses at the LHC: a study of \(pp \to t\bar{t} + 2\) jets at next-to-leading order, Phys. Rev. Lett.104 (2010) 162002 [arXiv:1002.4009] [SPIRES].
[52] T. Binoth et al., Next-to-leading order QCD corrections to \(pp \to b\bar{b}b\bar{b} + X\) at the LHC: the quark induced case, Phys. Lett.B 685 (2010) 293 [arXiv:0910.4379] [SPIRES].
[53] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [SPIRES]. · Zbl 1178.81202
[54] R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev.D 72 (2005) 065012 [hep-ph/0503132] [SPIRES].
[55] R. Britto, B. Feng and P. Mastrolia, The cut-constructible part of QCD amplitudes, Phys. Rev.D 73 (2006) 105004 [hep-ph/0602178] [SPIRES].
[56] P. Mastrolia, On triple-cut of scattering amplitudes, Phys. Lett.B 644 (2007) 272 [hep-th/0611091] [SPIRES]. · Zbl 1248.81135
[57] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev.D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].
[58] N.E.J. Bjerrum-Bohr, D.C. Dunbar and W.B. Perkins, Analytic structure of three-mass triangle coefficients, JHEP04 (2008) 038 [arXiv:0709.2086] [SPIRES]. · Zbl 1246.81169
[59] W.B. Kilgore, One-loop integral coefficients from generalized unitarity, arXiv:0711.5015 [SPIRES].
[60] S.D. Badger, Direct extraction of one loop rational terms, JHEP01 (2009) 049 [arXiv:0806.4600] [SPIRES]. · Zbl 1243.81219
[61] P. Mastrolia, Double-cut of scattering amplitudes and Stokes’ Theorem, Phys. Lett.B 678 (2009) 246 [arXiv:0905.2909] [SPIRES].
[62] P. Mastrolia, Unitarity-cuts and Berry’s phase, Lett. Math. Phys.91 (2010) 199 [arXiv:0906.3789] [SPIRES]. · Zbl 1185.81105
[63] C.F. Berger, V. Del Duca and L.J. Dixon, Recursive construction of Higgs+multiparton loop amplitudes: the last of the ϕ-nite loop amplitudes, Phys. Rev.D 74 (2006) 094021 [Erratum ibid.D 76 (2007) 099901] [hep-ph/0608180] [SPIRES].
[64] S.D. Badger and E.W.N. Glover, One-loop helicity amplitudes for H → gluons: the all-minus configuration, Nucl. Phys. Proc. Suppl.160 (2006) 71 [hep-ph/0607139] [SPIRES].
[65] S.D. Badger, E.W.N. Glover and K. Risager, One-loop ϕ-MHV amplitudes using the unitarity bootstrap, JHEP07 (2007) 066 [arXiv:0704.3914] [SPIRES].
[66] E.W.N. Glover, P. Mastrolia and C. Williams, One-loop ϕ-MHV amplitudes using the unitarity bootstrap: the general helicity case, JHEP08 (2008) 017 [arXiv:0804.4149] [SPIRES].
[67] S. Badger, E.W. Nigel Glover, P. Mastrolia and C. Williams, One-loop Higgs plus four gluon amplitudes: full analytic results, JHEP01 (2010) 036 [arXiv:0909.4475] [SPIRES]. · Zbl 1269.81183
[68] L.J. Dixon and Y. Sofianatos, Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP08 (2009) 058 [arXiv:0906.0008] [SPIRES].
[69] S. Badger, J.M. Campbell, R.K. Ellis and C. Williams, Analytic results for the one-loop NMHV Hqqgg amplitude, JHEP12 (2009) 035 [arXiv:0910.4481] [SPIRES].
[70] G. Passarino and M.J.G. Veltman, One loop corrections for e+e−annihilation into μ+μ−in the Weinberg Model, Nucl. Phys.B 160 (1979) 151 [SPIRES].
[71] G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys.B 153 (1979) 365 [SPIRES].
[72] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [SPIRES].
[73] T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun.180 (2009) 2317 [arXiv:0810.0992] [SPIRES]. · Zbl 1197.81004
[74] A. Lazopoulos, Multi-gluon one-loop amplitudes numerically, arXiv:0812.2998 [SPIRES].
[75] J.-C. Winter and W.T. Giele, Calculating gluon one-loop amplitudes numerically, arXiv:0902.0094 [SPIRES].
[76] C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev.D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].
[77] W.T. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP06 (2008) 038 [arXiv:0805.2152] [SPIRES].
[78] A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP09 (2009) 106 [arXiv:0903.4665] [SPIRES].
[79] F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP07 (2004) 017 [hep-ph/0404120] [SPIRES].
[80] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [SPIRES]. · Zbl 1116.81067
[81] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [SPIRES]. · Zbl 1049.81644
[82] C.F. Berger and D. Forde, Multi-parton scattering amplitudes via on-shell methods, arXiv:0912.3534 [SPIRES].
[83] G. Mahlon, One loop multi-photon helicity amplitudes, Phys. Rev.D 49 (1994) 2197 [hep-ph/9311213] [SPIRES].
[84] Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys.B 467 (1996) 479 [hep-ph/9511336] [SPIRES].
[85] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett.B 645 (2007) 213 [hep-ph/0609191] [SPIRES].
[86] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP03 (2007) 111 [hep-ph/0612277] [SPIRES].
[87] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [SPIRES]. · Zbl 1246.81170
[88] R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys.B 822 (2009) 270 [arXiv:0806.3467] [SPIRES]. · Zbl 1196.81234
[89] G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP07 (2007) 085 [arXiv:0704.1271] [SPIRES].
[90] Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev.D 73 (2006) 065013 [hep-ph/0507005] [SPIRES].
[91] G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [SPIRES].
[92] P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [SPIRES].
[93] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP01 (2010) 040 [arXiv:0910.3130] [SPIRES]. · Zbl 1269.81214
[94] P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP06 (2008) 030 [arXiv:0803.3964] [SPIRES].
[95] R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP02 (2008) 002 [arXiv:0712.1851] [SPIRES].
[96] T. Binoth et al., NLO cross sections for the LHC using GOLEM: status and prospects, PoS(RADCOR2009)026 [arXiv:1001.4905] [SPIRES].
[97] SM and NLO Multileg Working Group collaboration, J.R. Andersen et al., The SM and NLO multileg working group: Summary report, arXiv:1003.1241 [SPIRES].
[98] T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun.181 (2010) 1612 [arXiv:1001.1307] [SPIRES]. · Zbl 1219.82008
[99] K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, arXiv:1004.3284 [SPIRES]. · Zbl 1206.81145
[100] R. Pittau, A simple method for multi-leg loop calculations, Comput. Phys. Commun.104 (1997) 23 [hep-ph/9607309] [SPIRES].
[101] R. Kleiss, W.J. Stirling and S.D. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun.40 (1986) 359 [SPIRES].
[102] G.J. Gounaris, P.I. Porfyriadis and F.M. Renard, The γγ → γγprocess in the standard and SUSY models at high energies, Eur. Phys. J.C 9 (1999) 673 [hep-ph/9902230] [SPIRES].
[103] C. Bernicot, Light-light amplitude from generalized unitarity in massive QED, arXiv:0804.0749 [SPIRES].
[104] Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev.D 74 (2006) 093006 [hep-ph/0610028] [SPIRES].
[105] T. Binoth, G. Heinrich, T. Gehrmann and P. Mastrolia, Six-photon amplitudes, Phys. Lett.B 649 (2007) 422 [hep-ph/0703311] [SPIRES].
[106] W. Gong, Z. Nagy and D.E. Soper, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev.D 79 (2009) 033005 [arXiv:0812.3686] [SPIRES].
[107] C. Bernicot and J.P. Guillet, Six-photon amplitudes in scalar QED, JHEP01 (2008) 059 [arXiv:0711.4713] [SPIRES].
[108] C. Bernicot, The six-photon amplitude, arXiv:0804.1315 [SPIRES].
[109] T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP02 (2007) 013 [hep-ph/0609054] [SPIRES].
[110] S. Badger, N.E.J. Bjerrum-Bohr and P. Vanhove, Simplicity in the structure of QED and gravity amplitudes, JHEP02 (2009) 038 [arXiv:0811.3405] [SPIRES]. · Zbl 1245.81077
[111] G. Altarelli, R.K. Ellis and G. Martinelli, Leptoproduction and Drell-Yan processes beyond the leading approximation in chromodynamics, Nucl. Phys.B 143 (1978) 521 [Erratum ibid.B 146 (1978) 544] [SPIRES].
[112] G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys.B 157 (1979) 461 [SPIRES].
[113] B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan and S. Weinzierl, The Fully differential single top quark cross-section in next to leading order QCD, Phys. Rev.D 66 (2002) 054024 [hep-ph/0207055] [SPIRES].
[114] Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e+e−to four partons, Nucl. Phys.B 513 (1998) 3 [hep-ph/9708239] [SPIRES].
[115] Z. Bern, L.J. Dixon and D.A. Kosower, New QCD results from string theory, hep-th/9311026 [SPIRES]. · Zbl 0844.58111
[116] Z. Bern, G. Chalmers, L.J. Dixon and D.A. Kosower, One loop N gluon amplitudes with maximal helicity violation via collinear limits, Phys. Rev. Lett.72 (1994) 2134 [hep-ph/9312333] [SPIRES].
[117] A. Brandhuber, S. McNamara, B.J. Spence and G. Travaglini, Loop amplitudes in pure Yang-Mills from generalised unitarity, JHEP10 (2005) 011 [hep-th/0506068] [SPIRES].
[118] S.D. Badger, E.W.N. Glover, V.V. Khoze and P. Svrček, Recursion relations for gauge theory amplitudes with massive particles, JHEP07 (2005) 025 [hep-th/0504159] [SPIRES].
[119] T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP06 (2008) 082 [arXiv:0804.0350] [SPIRES].
[120] S. Actis, P. Mastrolia and G. Ossola, NLO QED corrections to Hard-Bremsstrahlung emission in Bhabha scattering, Phys. Lett.B 682 (2010) 419 [arXiv:0909.1750] [SPIRES].
[121] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279 [SPIRES]. · Zbl 0782.68091
[122] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
[123] T. Reiter, Optimising code generation with haggies, Comput. Phys. Commun.181 (2010) 1301 [arXiv:0907.3714] [SPIRES]. · Zbl 1216.68018
[124] T. Reiter, Automated evaluation of one-loop six-point processes for the LHC, arXiv:0903.0947 [SPIRES].
[125] S. Kretzer, H.L. Lai, F.I. Olness and W.K. Tung, CTEQ6 parton distributions with heavy quark mass effects, Phys. Rev.D 69 (2004) 114005 [hep-ph/0307022] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.