×

zbMATH — the first resource for mathematics

Flow and heat transfer in a micropolar fluid past a stretching surface embedded in a non-Darcian porous medium with uniform free stream. (English) Zbl 1290.76144
Summary: Heat transfer from a stretching iso-thermal surface embedded in a non-Darcian medium to a micropolar fluid in the presence of a uniform transverse magnetic field is analyzed. The surface is linearly stretched in the presence of a uniform free stream of constant velocity and temperature. The effect of internal heat generation/absorption is also considered. The governing equations of momentum, angular momentum and energy are solved numerically. Numerical results are shown in tabular form and graphically for the velocity, angular velocity and temperature distributions as well as the skin-friction and wall heat transfer rate and discussed for various physical parametric values.
See also the criticism on this paper by A. Pantokratoras [Appl. Math. Comput. 202, No. 2, 895–896 (2008; Zbl 1290.76146)] as well as on many other including the same error [Appl. Math. Model. 33, No. 1, 413–422 (2009; Zbl 1167.76322)].

MSC:
76S05 Flows in porous media; filtration; seepage
76A05 Non-Newtonian fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76W05 Magnetohydrodynamics and electrohydrodynamics
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eringen, A.C., J. math. mech, 16, 1, (1966)
[2] Eringen, A.C., J. math. anal. appl, 38, 480, (1972)
[3] Pop, I.; Na, T.Y., Appl. mech. engng. sci, 14, 639, (1976)
[4] Arimanm, T.; Turk, M.A.; Sylvester, N.D., Int. J. engng. sci, 11, 905, (1973)
[5] Ahmadi, G., Int. J. engng. sci, 14, 639, (1976)
[6] Jena, S.K.; Mathur, M.N., Int. J. engng. sci, 19, 1431, (1981)
[7] Sakiadis, B.C., Am. inst. chem. engng. J, 7, 26, (1961)
[8] Sakiadis, B.C., Am. inst. chem. engng. J, 7, 221, (1961)
[9] Rajagopal, R.K.; Na, T.Y.; Gupta, A.S., J. math. phys. sci, 21, 189, (1987)
[10] Hady, F.M., Int. J. num. meth. heat fluid flow, 6, 6, (1997)
[11] Na, T.Y.; Pop, I., Arch. appl. mech, 67, 229, (1997)
[12] Hassanien, I.; Gorla, R.S.R.; Abdulah, A.A., Appl. mech. engng, 3, 3, (1998)
[13] Desseaux, A.; Kelson, N.A., Anziam J, 42, 536, (2000)
[14] Hassanien, I.A.; Gorla, R.S.R., Acta mech, 84, 191, (1990)
[15] Mansour, M.A.; Gorla, R.S.R., Can. J. phys, 77, 1, (1999)
[16] Abo-Eldahab, E.M.; Ghonaim, A.F., Appl. math. comp, 137, 323, (2003)
[17] Siddheshwar, Pradeep G.; Pranech, S., Int. J. engng. sci, 36, 1173, (1998)
[18] Tien, C.I.; Vafai, K., Adv. appl. mech, 27, 225, (1990)
[19] Chen, C.; Lin, C., Int. J. engng. sci, 33, 1233, (1993)
[20] Bejan, A., Convective heat transfer, (1984), Wiley New York, pp. 367-371
[21] Takhar, H.S.; Pop, I., Mech. res. commun, 14, 81, (1987)
[22] Nakayama, A.; Koyama, H., Appl. sci. res, 46, 309, (1987)
[23] Singh, P.; Tewari, K., Int. J. engng. sci, 31, 1233, (1993)
[24] Sharma, R.S.; Gupta, U., Int. J. engng sci, 33, 1887, (1995)
[25] Raptis, A., J. porous media, 3, 95, (2000) · Zbl 1002.76514
[26] Willson, A.J., Proc. camb. phil. soc, 67, 469, (1970)
[27] Nield, D.A.; Bejan, A.C., Convection in porous media, (1999), Springer-Verlag New York · Zbl 0924.76001
[28] Rosenhead, L., Laminar boundary, (1963), Oxford University Press Oxford · Zbl 0115.20705
[29] Carnahan, B.; Luther, H.A.; James, O.W., Applied numerical methods, (1969), Wiley New York · Zbl 0195.44701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.