×

Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method. (English) Zbl 1290.76037

Summary: We present an application of the residual-based variational multiscale turbulence modeling (RBVMS) methodology to the computation of turbulent Taylor-Couette flow at high Reynolds number. We show that the RBVMS formulation globally conserves angular momentum, a feature that is felt to be important for flows dominated by rotation, and that is not shared by standard stabilized formulations of fluid flow. Weak imposition of Dirichlet boundary conditions is employed to enhance the accuracy of the RBVMS framework in the presence of thin turbulent boundary layers near solid walls. Calculation of conservative boundary forces and torques is also presented for the case of weakly enforced boundary conditions. NURBS-based isogeometric analysis is employed for the spatial discretization, and mesh refinement is performed to assess the convergence characteristics of the proposed methodology. Numerical tests show that very accurate results are obtained on relatively coarse grids. To the best of the authors’ knowledge, this paper is the first to report large eddy simulation computations of this challenging test case.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M10 Finite element methods applied to problems in fluid mechanics
76U05 General theory of rotating fluids
76E07 Rotation in hydrodynamic stability
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akkerman, I.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Computational mechanics, 41, 371-378, (2008) · Zbl 1162.76355
[2] Arnold, D.N.; Brezzi, F.; Cockburn, B.; Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM journal of numerical analysis, 39, 1749-1779, (2002) · Zbl 1008.65080
[3] Bazilevs, Y.; Calo, V.M.; Cottrel, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Computer methods in applied mechanics and engineering, 197, 173-201, (2007) · Zbl 1169.76352
[4] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid – structure interaction: theory, algorithms, and computations, Computational mechanics, 43, 3-37, (2008) · Zbl 1169.74015
[5] Bazilevs, Y.; Beirao da Veiga, L.; Cottrell, J.A.; Hughes, T.J.R.; Sangalli, G., Isogeometric analysis: approximation stability, and error estimates for h-refined meshes, Mathematical models and methods in applied sciences, 16, 1031-1090, (2006) · Zbl 1103.65113
[6] Bazilevs, Y.; Hughes, T.J.R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Computers and fluids, 36, 12-26, (2007) · Zbl 1115.76040
[7] Bazilevs, Y.; Hughes, T.J.R., NURBS-based isogeometric analysis for the computation of flows about rotating components, Computational mechanics, 43, 143-150, (2008) · Zbl 1171.76043
[8] Bazilevs, Y.; Michler, C.; Calo, V.M.; Hughes, T.J.R., Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Computer methods in applied mechanics and engineering, 196, 4853-4862, (2007) · Zbl 1173.76397
[9] Bazilevs, Y.; Michler, C.; Calo, V.M.; Hughes, T.J.R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes, Computer methods in applied mechanics and engineering, 199, 780-790, (2010) · Zbl 1406.76023
[10] Bilson, M.; Bremhorst, K., Direct numerical simulation of turbulent taylor – couette flow, Journal of fluid mechanics, 579, 227-270, (2007) · Zbl 1175.76076
[11] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Computer methods in applied mechanics and engineering, 32, 199-259, (1982) · Zbl 0497.76041
[12] V.M. Calo, Residual-based Multiscale Turbulence Modeling: Finite Volume Simulation of Bypass Transition, Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford University, 2004.
[13] Chung, J.; Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method, Journal of applied mechanics, 60, 371-375, (1993) · Zbl 0775.73337
[14] Cottrell, J.A.; Hughes, T.J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley Chichester · Zbl 1378.65009
[15] Dong, S., DNS of turbulent taylor – couette flow, Journal of fluid mechanics, 587, 373-393, (2007) · Zbl 1141.76411
[16] Dong, S., Turbulent flow between counter-rotating concentric cylinders: a DNS study, Journal of fluid mechanics, 615, 371-399, (2008) · Zbl 1155.76035
[17] Evans, J.A.; Bazilevs, Y.; Babus˘ka, I.; Hughes, T.J.R., N-widths sup – infs and optimality ratios for the k-version of the isogeometric finite element method, Computer methods in applied mechanics and engineering, 198, 1726-1741, (2009) · Zbl 1227.65093
[18] Farin, G.E., NURBS curves and surfaces: from projective geometry to practical use, (1995), A.K. Peters, Ltd. Natick, MA · Zbl 0848.68112
[19] Franca, L.P.; Frey, S., Stabilized finite element methods: II. the incompressible navier – stokes equations, Computer methods in applied mechanics and engineering, 99, 209-233, (1992) · Zbl 0765.76048
[20] Gomez, H.; Calo, V.M.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of the cahn – hilliard phase-field model, Computer methods in applied mechanics and engineering, 197, 4333-4352, (2008) · Zbl 1194.74524
[21] Holmen, J.; Hughes, T.J.R.; Oberai, A.A.; Wells, G.N., Sensitivity of the scale partition for variational multiscale LES of channel flow, Physics of fluids, 16, 824-827, (2004) · Zbl 1186.76234
[22] Hughes, T.J.R., Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation subgrid scale models, bubbles and the origins of stabilized methods, Computer methods in applied mechanics and engineering, 127, 387-401, (1995) · Zbl 0866.76044
[23] Hughes, T.J.R.; Feijóo, G.; Mazzei, L.; Quincy, J.B., The variational multiscale method – a paradigm for computational mechanics, Computer methods in applied mechanics and engineering, 166, 3-24, (1998) · Zbl 1017.65525
[24] Hughes, T.J.R.; Calo, V.M.; Scovazzi, G., Variational and multiscale methods in turbulence, () · Zbl 1323.76032
[25] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Computer methods in applied mechanics and engineering, 194, 4135-4195, (2005) · Zbl 1151.74419
[26] Hughes, T.J.R.; Mazzei, L.; Jansen, K.E., Large-eddy simulation and the variational multiscale method, Computing and visualization in science, 3, 47-59, (2000) · Zbl 0998.76040
[27] Hughes, T.J.R.; Mazzei, L.; Oberai, A.A.; Wray, A.A., The multiscale formulation of large eddy simulation: decay of homogenous isotropic turbulence, Physics of fluids, 13, 505-512, (2001) · Zbl 1184.76236
[28] Hughes, T.J.R.; Oberai, A.A.; Mazzei, L., Large-eddy simulation of turbulent channel flows by the variational multiscale method, Physics of fluids, 13, 1784-1799, (2001) · Zbl 1184.76237
[29] Hughes, T.J.R.; Sangalli, G., Variational multiscale analysis: the fine-scale green’s function, projection, optimization, localization, and stabilized methods, SIAM journal of numerical analysis, 45, 539-557, (2007) · Zbl 1152.65111
[30] Hughes, T.J.R.; Scovazzi, G.; Franca, L.P., Multiscale and stabilized methods, (), Chapter 2
[31] R Hughes, T.J.; Tezduyar, T.E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Computer methods in applied mechanics and engineering, 45, 217-284, (1984) · Zbl 0542.76093
[32] Hughes, T.J.R.; Wells, G.N.; Wray, A.A., Energy transfers and spectral eddy viscosity of homogeneous isotropic turbulence: comparison of dynamic smagorinsky and multiscale models over a range of discretizations, Physics of fluids, 16, 4044-4052, (2004) · Zbl 1187.76226
[33] Jansen, K.E.; Whiting, C.H.; Hulbert, G.M., A generalized-\(\alpha\) method for integrating the filtered navier – stokes equations with a stabilized finite element method, Computer methods in applied mechanics and engineering, 190, 305-319, (1999) · Zbl 0973.76048
[34] Johnson, C., Numerical solution of partial differential equations by the finite element method, (1987), Cambridge University Press Sweden
[35] Kirby, R.M.; Karniadakis, G.E., Spectral element and hp methods, () · Zbl 0992.76056
[36] Kravchenko, A.G.; Moin, P.; Moser, R., Zonal embedded grids for numerical simulation of wall-bounded turbulent flows, Journal of computational physics, 127, 412-423, (1996) · Zbl 0862.76062
[37] Kravchenko, A.G.; Moin, P.; Shariff, K., B-spline method and zonal grids for simulation of complex turbulent flows, Journal of computational physics, 151, 757-789, (1999) · Zbl 0942.76058
[38] Kwok, W.Y.; Moser, R.D.; Jiménez, J., A critical evaluation of the resolution properties of B-spline and compact finite difference methods, Journal of computational physics, 174, 510-551, (2001) · Zbl 0995.65089
[39] Lewis, G.; Swinney, H., Velocity structure functions, scaling and transitions in high-Reynolds-number couette – taylor flow, Phys. rev. E, 59, 5457-5467, (1999)
[40] Moser, R.D.; Moin, P.; Leonard, A., A spectral numerical method for the navier – stokes equations with applications to taylor – couette flow, Journal of computational physics, 52, 524-544, (1983) · Zbl 0529.76034
[41] Nitsche, J., Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind, Abhandlungen aus dem mathematischen seminar der universitat Hamburg, 36, 9-15, (1971) · Zbl 0229.65079
[42] Orlandi, P.; Ebstein, D., Turbulent budgets in rotating pipes by DNS, International journal of heat and fluid flow, 21, 499-505, (2000)
[43] Piegl, L.; Tiller, W., The NURBS book, Monographs in visual communication, (1997), Springer-Verlag New York · Zbl 0868.68106
[44] Pirro, D.; Quadrio, M., Direct numerical simulation of turbulent taylor – couette flow, European journal of mechanics - B/fluids, 27, 552-566, (2007) · Zbl 1147.76035
[45] Shariff, K.; Moser, R.D., Two-dimensional mesh embedding for B-spline methods, Journal of computational physics, 145, 471-488, (1998) · Zbl 0910.65083
[46] Spalding, D.B., A single formula for the law of the wall, Journal of applied mechanics, 28, 444-458, (1961) · Zbl 0098.17603
[47] Speziale, C.G.; Younis, B.A.; Rubinstein, R.; Zhou, Y., On consistency conditions for rotating turbulent flows, Physics of fluids, 10, 2108-2110, (1998)
[48] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite element computation of 3D flows, Computer, 26, 27-36, (1993)
[49] Tezduyar, T.E., Computation of moving boundaries and interfaces and stabilization parameters, International journal of numerical methods in fluids, 43, 555-575, (2003) · Zbl 1032.76605
[50] Tezduyar, T.E.; Aliabadi, S.K.; Behr, M.; Mittal, S., Massively parallel finite element simulation of compressible and incompressible flows, Computer methods in applied mechanics and engineering, 119, 157-177, (1994) · Zbl 0848.76040
[51] Vastano, J.A.; Moser, R.D., Short-time Lyapunov exponent analysis and the transition to chaos in taylor – couette flow, Journal of fluid mechanics, 233, 83-118, (1991) · Zbl 0738.76033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.