×

zbMATH — the first resource for mathematics

Variational iteration technique for solving a system of nonlinear equations. (English) Zbl 1288.90093
Summary: In this paper, we use the variational iteration technique to suggest and analyze some new iterative methods for solving a system of nonlinear equations. We prove that the new method has fourth-order convergence. Several numerical examples are given to illustrate the efficiency and performance of the new iterative methods. Our results can be viewed as a refinement and improvement of the previously known results.

MSC:
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Burden R.L., Faires J.D.: Numerical Analysis. PWS Publishing Company, Boston (2001) · Zbl 0671.65001
[2] Babajee D.K.R., Dauhoo M.Z., Darvishi M.T., Barati A.: A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Appl. Math. Comput. 200, 452–458 (2008) · Zbl 1160.65018 · doi:10.1016/j.amc.2007.11.009
[3] Babajee D.K.R., Dauhoo M.Z.: Convergence and spectral analysis of the Frontini–Sormani family of multipoint third order methods from quadrature rule. Numer. Algorithms 53, 467–484 (2010) · Zbl 1191.65047 · doi:10.1007/s11075-009-9314-z
[4] Babajee D.K.R., Dauhoo M.Z., Darvishi M.T., Karami A., Barati A.: Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations. Appl. Math. Comput. 223, 2002–2012 (2010) · Zbl 1204.65050 · doi:10.1016/j.cam.2009.09.035
[5] Darvishi M.T., Barati A.: A third-order Newton-type method to solve systems of nonlinear equations. Appl. Math. Comput. 187, 630–635 (2007) · Zbl 1116.65060 · doi:10.1016/j.amc.2006.08.080
[6] Darvishi M.T., Barati A.: Super cubic iterative methods to solve systems of nonlinear equations. Appl. Math. Comput. 188, 1678–1685 (2007) · Zbl 1119.65045 · doi:10.1016/j.amc.2006.11.022
[7] Decker D.W., Kelley C.T.: Newton’s method at singular points. II. SIAM J. Numer. Anal. 17, 465–471 (1980) · Zbl 0453.65037 · doi:10.1137/0717039
[8] Frontini M., Sormani E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 149, 771–782 (2004) · Zbl 1050.65055 · doi:10.1016/S0096-3003(03)00178-4
[9] Haijun W.: New third-order method for solving systems of nonlinear equations. Numer. Algorithms 50, 271–282 (2009) · Zbl 1163.65027 · doi:10.1007/s11075-008-9227-2
[10] He J.H.: Variational iteration method-some recent results and new interpretations. J. Comput. Appl. Math. 207, 3–17 (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[11] Inokuti M., Sekine H., Mura T.: General use of the Lagrange multiplier in nonlinear mathematical physics. In: Nemat-Nasser, S. (ed) Variational Methods in the Mechanics of Solids, pp. 156–162. Pergamon Press, New York (1978)
[12] Noor M.A., Noor K.I.: Three-step iterative methods for nonlinear equations. Appl. Math. Comput. 183, 322–327 (2006) · Zbl 1113.65050 · doi:10.1016/j.amc.2006.05.055
[13] Noor M.A., Mohyud-Din S.T.: Variational iteration techniques for solving higher order boundary value problems. Appl. Math. Comput. 189, 1929–1942 (2007) · Zbl 1122.65374 · doi:10.1016/j.amc.2006.12.071
[14] Noor M.A.: New classes of iterative methods for nonlinear equations. Appl. Math. Comput. 191, 128–131 (2007) · Zbl 1193.65069 · doi:10.1016/j.amc.2007.02.098
[15] Noor M.A., Shah F.A.: Variational iteration technique for solving nonlinear equations. J. Appl. Math. Comput. 31, 247–254 (2009) · Zbl 1188.65067 · doi:10.1007/s12190-008-0207-4
[16] Noor M.A., Waseem M.: Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 57, 101–106 (2009) · Zbl 1165.65349 · doi:10.1016/j.camwa.2008.10.067
[17] Noor M.A., Waseem M.: Variants of Newton’s method using fifth-order quadrature formulas: revisited. J. Appl. Math. Inform. 27, 1195–1209 (2009)
[18] Noor M.A.: Some iterative methods for solving nonlinear equations using homotopy perturbation method. Int. J. Comp. Math. 87, 141–149 (2010) · Zbl 1182.65079 · doi:10.1080/00207160801969513
[19] Noor M.A.: Iterative methods for nonlinear equations using homotopy perturbation technique. Appl. Math. Inf. Sci. 4, 227–235 (2010) · Zbl 1192.65053
[20] Noor M.A., Noor K.I., Waseem M.: Fourth-order iterative methods for solving nonlinear equations. Int. J. Appl. Math. Eng. Sci. 4, 43–52 (2010)
[21] Noor, M.A., Noor, K.I., Al-Said, E., Waseem, M.: Some new iterative methods for nonlinear equations. Math. Probl. Eng., 1–12 (2010). Article ID 198943 · Zbl 1207.65054
[22] Noor M.A., Shah F.A., Noor K.I., Al-Said E.: Variational iteration technique for finding multiple roots of nonlinear equations. Sci. Res. Essays 6, 1344–1350 (2011)
[23] Noor M.A., Al-Said E., Mohyud-Din S.T.: A reliable algorithm for solving tenth-order boundary value problems. Appl. Math. Inf. Sci. 6, 103–107 (2012)
[24] Noor, M.A., Noor, K.I., Waseem, M.: Applications of quadrature formula for solving systems of nonlinear equations. Internat. J. Modern Phys. B (2012, accepted) · Zbl 1262.65058
[25] Ortega J.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in several variables. Academic Press, New York (1970) · Zbl 0241.65046
[26] Traub J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964) · Zbl 0121.11204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.