×

zbMATH — the first resource for mathematics

Two classes of permutation polynomials over finite fields. (English) Zbl 1288.11111
Summary: Two classes of permutation polynomials over finite fields are presented. The first class is a further study of permutation polynomials of the form \((x^{p^k} - x+\delta )^s+L(x)\) and the second class is a supplement of the recent work of Hou on permutation polynomials. We show the permutation properties of two polynomials in the first class and five polynomials in the second class by using their implicit or explicit piecewise function characteristic over the subsets of the finite field defined by multiplicative or additive characters of the field. Two polynomials in the first class theoretically explain two numerical observations of J. Yuan et al. [Finite Fields Appl. 14, No. 2, 482–493 (2008; Zbl 1211.11136)] in their permutation polynomial search experiment.

MSC:
11T06 Polynomials over finite fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akbary, A.; Ghioca, D.; Wang, Q., On constructing permutations of finite fields, Finite fields appl., 17, 1, 51-67, (2011) · Zbl 1281.11102
[2] Cao, X.; Hu, L., New methods for generating permutation polynomials over finite fields, Finite fields appl., 17, 6, 493-503, (2011) · Zbl 1245.11114
[3] Charpin, P.; Kyureghyan, G., When does \(G(X) + \gamma \operatorname{Tr}(H(X))\) permute \(\mathit{GF}(p^n)\), Finite fields appl., 15, 5, 615-632, (2009) · Zbl 1229.11153
[4] Cohen, S.D., Permutation group theory and permutation polynomials, (), 133-146 · Zbl 0958.12001
[5] Ding, C.; Xiang, Q.; Yuan, J.; Yuan, P., Explicit classes of permutation polynomials of \(\mathbb{F}_{3^{3 m}}\), Sci. China ser. A: math., 53, 4, 639-647, (2009) · Zbl 1215.11113
[6] Helleseth, T.; Zinoviev, V., New Kloosterman sums identities over \(\mathbb{F}_{2^m}\) for all m, Finite fields appl., 9, 2, 187-193, (2003) · Zbl 1081.11077
[7] Hollmann, H.D.L.; Xiang, Q., A class of permutation polynomials of \(\mathbb{F}_{2^m}\) related to dickson polynomials, Finite fields appl., 11, 1, 111-122, (2005) · Zbl 1073.11074
[8] Hou, X., Two classes of permutation polynomials over finite fields, J. combin. theory ser. A, 118, 2, 448-454, (2011) · Zbl 1230.11146
[9] Hou, X.; Mullen, G.L.; Sellers, J.A.; Yucas, J.L., Reversed dickson polynomials over finite fields, Finite fields appl., 15, 6, 748-773, (2009) · Zbl 1228.11174
[10] Laigle-Chapuy, Y., Permutation polynomials and applications to coding theory, Finite fields appl., 13, 1, 58-70, (2007) · Zbl 1107.11048
[11] Lidl, R.; Niederreiter, H., Finite fields, Encyclopedia math. appl., vol. 20, (1997), Cambridge University Press
[12] Mullen, G.L., Permutation polynomials over finite fields, (), 131-151 · Zbl 0808.11069
[13] Yuan, J.; Ding, C., Four classes of permutation polynomials of \(\mathbb{F}_{2^m}\), Finite fields appl., 13, 4, 869-876, (2007) · Zbl 1167.11045
[14] Yuan, J.; Ding, C.; Wang, H.; Pieprzyk, J., Permutation polynomials of the form \((x^p - x + \delta)^s + L(x)\), Finite fields appl., 14, 2, 482-493, (2008) · Zbl 1211.11136
[15] Yuan, P.; Ding, C., Permutation polynomials over finite fields from a powerful lemma, Finite fields appl., 17, 6, 560-574, (2011) · Zbl 1258.11100
[16] Zeng, X.; Zhu, X.; Hu, L., Two new permutation polynomials with the form \((x^{2^k} + x + \delta)^s + x\) over \(\mathbb{F}_{2^n}\), Appl. algebra engrg. comm. comput., 21, 2, 145-150, (2010) · Zbl 1215.11116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.