×

zbMATH — the first resource for mathematics

Constructing permutation polynomials from piecewise permutations. (English) Zbl 1288.11109
Summary: We present a construction of permutation polynomials over finite fields by using some piecewise permutations. Based on a matrix approach and an interpolation approach, several classes of piecewise permutation polynomials are obtained.

MSC:
11T06 Polynomials over finite fields
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akbary, A.; Ghioca, D.; Wang, Q., On constructing permutations of finite fields, Finite Fields Appl., 17, 51-67, (2011) · Zbl 1281.11102
[2] Blokhuis, A.; Coulter, R. S.; Henderson, M., Permutations amongst the Dembowski-Ostrom polynomials, (Jungnickel, D.; Niederreiter, H., Finite Fields and Applications: Proceedings of the Fifth International Conferences on Finite Fields and Applications, (2001)), 37-42 · Zbl 1009.11064
[3] Cao, X.; Hu, L., New methods for generating permutation polynomials over finite fields, Finite Fields Appl., 17, 493-503, (2011) · Zbl 1245.11114
[4] Coulter, R.; Henderson, M.; Matthews, R., A note on constructing permutation polynomials, Finite Fields Appl., 15, 553-557, (2009) · Zbl 1215.11112
[5] Coulter, R.; Henderson, M., Commutative presemifields and semifields, Adv. Math., 217, 282-304, (2008) · Zbl 1194.12007
[6] Ding, C.; Xiang, Q.; Yuan, J.; Yuan, P., Explicit classes of permutation polynomials of \(\mathbb{F}_{3^{3 m}}\), Sci. China Ser. A, 53, 4, 630-647, (2009)
[7] Fernando, N.; Hou, X., A piecewise construction of permutation polynomials over finite fields, Finite Fields Appl., 18, 1184-1194, (2012) · Zbl 1254.05008
[8] Hollmann, H.; Xiang, Q., A class of permutation polynomials of \(\mathbb{F}_{2^m}\) related to dickson polynomials, Finite Fields Appl., 11, 111-122, (2005) · Zbl 1073.11074
[9] Li, N.; Helleseth, T.; Tang, X., Further results on a class of permutation polynomials over finite fields, Finite Fields Appl., 22, 16-23, (2013) · Zbl 1285.05004
[10] Lidl, R.; Mullen, G. L.; Turnward, G., Dickson polynomials, Pitman Monogr. Surv. Pure Appl. Math., vol. 65, (1993), Addison-Wesley · Zbl 0823.11070
[11] Lidl, R.; Niederriter, H., Finite fields, Encycl. Math. Appl., vol. 20, (1983), Addison-Wesley Reading
[12] Lidl, R.; Mullen, G. L., When does a polynomial over a finite field permute the elements of the field?, Am. Math. Mon., 95, 243-246, (1988) · Zbl 0653.12010
[13] Lidl, R.; Mullen, G. L., When does a polynomial over a finite field permute the elements of the field? II, Am. Math. Mon., 100, 71-74, (1993) · Zbl 0777.11054
[14] Marcos, J. E., Specific permutation polynomials over finite fields, Finite Fields Appl., 17, 105-112, (2011) · Zbl 1261.11080
[15] Wan, D.; Lidl, R., Permutation polynomials of the form \(x^r f(x^{(q - 1) / d})\) and their group structure, Monatshefte Math., 112, 149-163, (1991) · Zbl 0737.11040
[16] Wang, Q., Cyclotomy and permutation polynomials of large indices, Finite Fields Appl., 22, 57-69, (2013) · Zbl 1331.11107
[17] Yuan, J.; Ding, C.; Wang, H.; Pieprezyk, J., Permutation polynomials of the form \((x^p - x + \delta)^s + L(x)\), Finite Fields Appl., 14, 482-492, (2008)
[18] Yuan, P., More explicit classes of permutation polynomials of \(\mathbb{F}_{3^{3 m}}\), Finite Fields Appl., 16, 88-93, (2010)
[19] Yuan, P.; Ding, C., Permutation polynomials over finite fields from a powerful lemma, Finite Fields Appl., 17, 560-574, (2011) · Zbl 1258.11100
[20] Zhou, K., A remark on linear permutation polynomials, Finite Fields Appl., 14, 532-536, (2008) · Zbl 1211.11137
[21] Zeng, X.; Zhu, X.; Hu, L., Two new permutation polynomials with the form \((x^{2^k} + x + \delta)^s + x\) over \(\mathbb{F}_{2^n}\), Appl. Algebra Eng. Commun. Comput., 21, 145-150, (2010) · Zbl 1215.11116
[22] Zha, Z.; Hu, L., Two classes of permutation polynomials over finite fields, Finite Fields Appl., 18, 781-790, (2012) · Zbl 1288.11111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.