zbMATH — the first resource for mathematics

Coordinating replenishment and pricing policies for non-instantaneous deteriorating items with price-sensitive demand. (English) Zbl 1287.90009
Summary: This article will formulate and solve an inventory system with non-instantaneous deteriorating items and price-sensitive demand. The purpose of this study is to determine the optimal selling price and the length of replenishment cycle such that the total profit per unit time has a maximum value for the retailer. We first establish a proper model for a mathematical formulation. Then we develop several theoretical results and provide the decision-maker with an algorithm to find the optimal solution. Finally, two numerical examples are provided to illustrate the solution procedure, and a sensitivity analysis of the optimal solution with respect to major parameters is carried out.

90B05 Inventory, storage, reservoirs
93A30 Mathematical modelling of systems (MSC2010)
91B60 Trade models
Full Text: DOI
[1] DOI: 10.1287/mnsc.42.8.1093 · Zbl 0879.90069
[2] DOI: 10.1016/S0377-2217(02)00159-5 · Zbl 1012.90002
[3] DOI: 10.1016/j.ejor.2004.05.003 · Zbl 1077.90002
[4] DOI: 10.1002/nav.3800240205 · Zbl 0374.90026
[5] DOI: 10.1080/05695557308974918
[6] DOI: 10.1016/j.omega.2005.05.002
[7] Ghare PM, International Journal of Production Research 21 pp 449– (1963)
[8] DOI: 10.1016/S0377-2217(00)00248-4 · Zbl 0978.90004
[9] Hadley, G and Whitin, T. 1963.Analysis of Inventory Systems, 169–172. Englewood Cliff NJ: Prentice-Hall. · Zbl 0133.42901
[10] DOI: 10.1080/002077200291235 · Zbl 1080.93574
[11] DOI: 10.1016/j.cie.2004.06.007
[12] DOI: 10.1080/00207390412331303487 · Zbl 02363854
[13] DOI: 10.1080/05695557408974948
[14] DOI: 10.1080/05695557708975129
[15] DOI: 10.1016/0925-5273(95)00053-3
[16] DOI: 10.1080/095372897235073
[17] DOI: 10.1016/S0925-5273(98)00113-3
[18] DOI: 10.1016/S0925-5273(00)00121-3
[19] DOI: 10.1016/j.ijpe.2005.01.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.