×

zbMATH — the first resource for mathematics

Three-generation models from \(E_{8}\) magnetized extra dimensional theory. (English) Zbl 1287.81124
Summary: We study 10D super Yang-Mills \(E_{8}\) theory on the 6D torus compactification with magnetic fluxes. We study systematically the possibilities for realizing 4D supersymmetric standard models with three generations of quarks and leptons. We also study quark mass matrices.

MSC:
81V22 Unified quantum theories
81V17 Gravitational interaction in quantum theory
83E15 Kaluza-Klein and other higher-dimensional theories
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Manton, NS, Fermions and parity violation in dimensional reduction schemes, Nucl. Phys., B 193, 502, (1981)
[2] Chapline, G.; Slansky, R., Dimensional reduction and flavor chirality, Nucl. Phys., B 209, 461, (1982)
[3] Randjbar-Daemi, S.; Salam, A.; Strathdee, JA, Spontaneous compactification in six-dimensional Einstein- Maxwell theory, Nucl. Phys., B 214, 491, (1983)
[4] Wetterich, C., Dimensional reduction of Weyl, Majorana and Majorana-Weyl spinors, Nucl. Phys., B 222, 20, (1983)
[5] Frampton, PH; Yamamoto, K., Unitary flavor unification through higher dimensions, Phys. Rev. Lett., 52, 2016, (1984)
[6] Frampton, PH; Kephart, TW, Left-right asymmetry from the eight sphere, Phys. Rev. Lett., 53, 867, (1984)
[7] Pilch, K.; Schellekens, AN, Symmetric vacua of higher dimensional Einstein Yang-Mills theories, Nucl. Phys., B 256, 109, (1985)
[8] Witten, E., Some properties of O(32) superstrings, Phys. Lett., B 149, 351, (1984)
[9] C. Bachas, A Way to break supersymmetry, hep-th/9503030 [SPIRES].
[10] Berkooz, M.; Douglas, MR; Leigh, RG, Branes intersecting at angles, Nucl. Phys., B 480, 265, (1996)
[11] Blumenhagen, R.; Görlich, L.; Körs, B.; Lüst, D., Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP, 10, 006, (2000)
[12] Angelantonj, C.; Antoniadis, I.; Dudas, E.; Sagnotti, A., Type-I strings on magnetised orbifolds and brane transmutation, Phys. Lett., B 489, 223, (2000)
[13] Cremades, D.; Ibáñez, LE; Marchesano, F., Computing Yukawa couplings from magnetized extra dimensions, JHEP, 05, 079, (2004)
[14] Troost, J., Constant field strengths on T(2n), Nucl. Phys., B 568, 180, (2000)
[15] Alfaro, J.; Broncano, A.; Gavela, MB; Rigolin, S.; Salvatori, M., Phenomenology of symmetry breaking from extra dimensions, JHEP, 01, 005, (2007)
[16] Aldazabal, G.; Franco, S.; Ibáñez, LE; Rabadán, R.; Uranga, AM, D = 4 chiral string compactifications from intersecting branes, J. Math. Phys., 42, 3103, (2001)
[17] Aldazabal, G.; Franco, S.; Ibáñez, LE; Rabadán, R.; Uranga, AM, Intersecting brane worlds, JHEP, 02, 047, (2001)
[18] Blumenhagen, R.; Körs, B.; Lüst, D., Type I strings with F- and B-flux, JHEP, 02, 030, (2001)
[19] Cvetič, M.; Shiu, G.; Uranga, AM, Three-family supersymmetric standard like models from intersecting brane worlds, Phys. Rev. Lett., 87, 201801, (2001)
[20] Cvetič, M.; Shiu, G.; Uranga, AM, Chiral four-dimensional N = 1 supersymmetric type IIA orientifolds from intersecting D6-branes, Nucl. Phys., B 615, 3, (2001)
[21] Honecker, G.; Ott, T., Getting just the supersymmetric standard model at intersecting branes on the Z(6)-orientifold, Phys. Rev., D 70, 126010, (2004)
[22] Gmeiner, F.; Honecker, G., Mapping an island in the landscape, JHEP, 09, 128, (2007)
[23] Blumenhagen, R.; Cvetič, M.; Langacker, P.; Shiu, G., Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci., 55, 71, (2005)
[24] Blumenhagen, R.; Körs, B.; Lüst, D.; Stieberger, S., Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept., 445, 1, (2007)
[25] Vecchia, P.; Liccardo, A.; Marotta, R.; Pezzella, F., Kähler metrics and Yukawa couplings in magnetized brane models, JHEP, 03, 029, (2009)
[26] Antoniadis, I.; Kumar, A.; Panda, B., Fermion wavefunctions in magnetized branes: theta identities and Yukawa couplings, Nucl. Phys., B 823, 116, (2009)
[27] Abe, H.; Choi, K-S; Kobayashi, T.; Ohki, H., Higher order couplings in magnetized brane models, JHEP, 06, 080, (2009)
[28] Abe, H.; Choi, K-S; Kobayashi, T.; Ohki, H., Non-abelian discrete flavor symmetries from magnetized/intersecting brane models, Nucl. Phys., B 820, 317, (2009)
[29] Abe, H.; Kobayashi, T.; Ohki, H., Magnetized orbifold models, JHEP, 09, 043, (2008)
[30] Abe, H.; Choi, K-S; Kobayashi, T.; Ohki, H., Three generation magnetized orbifold models, Nucl. Phys., B 814, 265, (2009)
[31] Abe, H.; Choi, K-S; Kobayashi, T.; Ohki, H., Magnetic flux, Wilson line and orbifold, Phys. Rev., D 80, 126006, (2009)
[32] Kobayashi, T.; Raby, S.; Zhang, R-J, Constructing 5d orbifold grand unified theories from heterotic strings, Phys. Lett., B 593, 262, (2004)
[33] Kobayashi, T.; Raby, S.; Zhang, R-J, Searching for realistic 4d string models with a Pati-Salam symmetry: orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold, Nucl. Phys., B 704, 3, (2005)
[34] Förste, S.; Nilles, HP; Vaudrevange, PKS; Wingerter, A., Heterotic brane world, Phys. Rev., D 70, 106008, (2004)
[35] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string, Phys. Rev. Lett., 96, 121602, (2006)
[36] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string. II, Nucl. Phys., B 785, 149, (2007)
[37] Kim, JE; Kyae, B., Flipped SU(5) from Z(12 − I) orbifold with Wilson line, Nucl. Phys., B 770, 47, (2007)
[38] Lebedev, O.; etal., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett., B 645, 88, (2007)
[39] Lebedev, O.; etal., The heterotic road to the MSSM with R parity, Phys. Rev., D 77, 046013, (2008)
[40] Blumenhagen, R.; Honecker, G.; Weigand, T., Loop-corrected compactifications of the heterotic string with line bundles, JHEP, 06, 020, (2005)
[41] K.-S. Choi et al., E6,7,8 Magnetized Extra Dimensional Models, arXiv:0908.0395 [SPIRES].
[42] Hooft, G., A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys., B 153, 141, (1979)
[43] Hooft, G., Some twisted selfdual solutions for the Yang-Mills equations on a hypertorus, Commun. Math. Phys., 81, 267, (1981)
[44] Baal, P., SU(\(N\)) Yang-Mills solutions with constant field strength on \(T\)\^{}{4}, Commun. Math. Phys., 94, 397, (1984)
[45] Guralnik, Z.; Ramgoolam, S., From 0-branes to torons, Nucl. Phys., B 521, 129, (1998)
[46] Antoniadis, I.; Maillard, T., Moduli stabilization from magnetic fluxes in type-I string theory, Nucl. Phys., B 716, 3, (2005)
[47] J.L. Bourjaily, Effective Field Theories for Local Models in F-theory and M-theory, arXiv:0905.0142 [SPIRES].
[48] Salvatori, M., Symmetry breaking from Scherk-Schwarz compactification, JHEP, 06, 014, (2007)
[49] D. Hernandez, S. Rigolin and M. Salvatori, Symmetry Breaking in Six Dimensional Flux Compactification Scenarios, arXiv:0712.1980 [SPIRES].
[50] Gersdorff, G., A new class of rank breaking orbifolds, Nucl. Phys., B 793, 192, (2008)
[51] A.F. Faedo, D. Hernandez, S. Rigolin and M. Salvatori, One-loop effective potential in M4 x T2 with and without ’t Hooft flux, arXiv:0911.0997 [SPIRES].
[52] H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Flavor structure from magnetic fluxes and non-Abelian Wilson lines, arXiv:1001.1788 [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.