×

Heterotic models from vector bundles on toric Calabi-Yau manifolds. (English) Zbl 1287.81094

Summary: We systematically approach the construction of heterotic \(E_{8}\times E_{8}\) Calabi-Yau models, based on compact Calabi-Yau three-folds arising from toric geometry and vector bundles on these manifolds. We focus on a simple class of 101 such three-folds with smooth ambient spaces, on which we perform an exhaustive scan and find all positive monad bundles with SU(\(N\)), \(N\) = 3; 4; 5 structure groups, subject to the heterotic anomaly cancellation constraint. We find that anomaly-free positive monads exist on only 11 of these toric three-folds with a total number of bundles of about 2000. Only 21 of these models, all of them on three-folds realizable as hypersurfaces in products of projective spaces, allow for three families of quarks and leptons. We also perform a preliminary scan over the much larger class of semi-positive monads which leads to about 44000 bundles with 280 of them satisfying the three-family constraint. These 280 models provide a starting point for heterotic model building based on toric three-folds.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81V25 Other elementary particle theory in quantum theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)

Software:

PALP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] L.B. Anderson, Y.-H. He and A. Lukas, Heterotic compactification, an algorithmic approach, JHEP07 (2007) 049 [hep-th/0702210] [SPIRES]. · doi:10.1088/1126-6708/2007/07/049
[2] L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP07 (2008) 104 [arXiv:0805.2875] [SPIRES]. · doi:10.1088/1126-6708/2008/07/104
[3] M. Gabella, Y.-H. He and A. Lukas, An abundance of heterotic vacua, JHEP12 (2008) 027 [arXiv:0808.2142] [SPIRES]. · Zbl 1329.81313 · doi:10.1088/1126-6708/2008/12/027
[4] L.B. Anderson, J. Gray, D. Grayson, Y.-H. He and A. Lukas, Yukawa couplings in heterotic compactification, Commun. Math. Phys.297 (2010) 95 [arXiv:0904.2186] [SPIRES]. · Zbl 1203.81130 · doi:10.1007/s00220-010-1033-8
[5] C. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces, Birkhauser Verlag, Boston U.S.A. (1988).
[6] J. Distler and B.R. Greene, Aspects of (2, 0) string compactifications, Nucl. Phys.B 304 (1988) 1 [SPIRES]. · doi:10.1016/0550-3213(88)90619-0
[7] S. Kachru, Some three generation (0, 2) Calabi-Yau models, Phys. Lett.B 349 (1995) 76 [hep-th/9501131] [SPIRES].
[8] R. Blumenhagen, Target space duality for (0, 2) compactifications, Nucl. Phys.B 513 (1998) 573 [hep-th/9707198] [SPIRES]. · Zbl 0939.32017 · doi:10.1016/S0550-3213(97)00721-9
[9] R. Blumenhagen, R. Schimmrigk and A. Wisskirchen, (0, 2) mirror symmetry, Nucl. Phys.B 486 (1997) 598 [hep-th/9609167] [SPIRES]. · Zbl 0925.14014 · doi:10.1016/S0550-3213(96)00698-0
[10] M.R. Douglas and C.-G. Zhou, Chirality change in string theory, JHEP06 (2004) 014 [hep-th/0403018] [SPIRES]. · doi:10.1088/1126-6708/2004/06/014
[11] P. Candelas, A.M. Dale, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds, Nucl. Phys.B 298 (1988) 493 [SPIRES]. · doi:10.1016/0550-3213(88)90352-5
[12] P. Candelas, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds. 2: Three generation manifolds, Nucl. Phys.B 306 (1988) 113 [SPIRES]. · doi:10.1016/0550-3213(88)90173-3
[13] P.S. Green, T. Hubsch and C.A. Lütken, All Hodge numbers of all complete intersection Calabi-Yau manifolds, Class. Quant. Grav.6 (1989) 105 [SPIRES]. · Zbl 0657.53063 · doi:10.1088/0264-9381/6/2/006
[14] A.-M. He and P. Candelas, On the number of complete intersection Calabi-Yau manifolds, Commun. Math. Phys.135 (1990) 193 [SPIRES]. · Zbl 0722.53061 · doi:10.1007/BF02097661
[15] M. Gagnon and Q. Ho-Kim, An exhaustive list of complete intersection Calabi-Yau manifolds, Mod. Phys. Lett.A 9 (1994) 2235 [SPIRES]. · Zbl 1020.14501
[16] P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys.B 258 (1985) 46 [SPIRES]. · doi:10.1016/0550-3213(85)90602-9
[17] E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys.B 268 (1986) 79 [SPIRES]. · doi:10.1016/0550-3213(86)90202-6
[18] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, volume II, Cambridge University Press, Cambridge U.K. (1987) [SPIRES].
[19] R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The particle spectrum of heterotic compactifications, JHEP12 (2004) 054 [hep-th/0405014] [SPIRES]. · doi:10.1088/1126-6708/2004/12/054
[20] Y.-H. He, GUT particle spectrum from heterotic compactification, Mod. Phys. Lett.A 20 (2005) 1483 [SPIRES]. · Zbl 1102.81062
[21] M. Kreuzer and H. Skarke, On the classification of reflexive polyhedra, Commun. Math. Phys.185 (1997) 495 [hep-th/9512204] [SPIRES]. · Zbl 0894.14026 · doi:10.1007/s002200050100
[22] M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [SPIRES]. · Zbl 1017.52007
[23] M. Kreuzer and H. Skarke, Refkexive polyhedra, weights and toric Calabi-Yau fibrations, Rev. Math. Phys.14 (2002) 343 [math.AG/0001106] [SPIRES]. · Zbl 1079.14534 · doi:10.1142/S0129055X0200120X
[24] M. Kreuzer, Strings on Calabi-Yau spaces and toric geometry, Nucl. Phys. (Proc. Suppl.)102 (2001) 87 [hep-th/0103243] [SPIRES]. · Zbl 1006.83062 · doi:10.1016/S0920-5632(01)01541-9
[25] M. Kreuzer, Toric geometry and Calabi-Yau compactifications, hep-th/0612307 [SPIRES]. · Zbl 1006.83062
[26] M. Kreuzer, E. Riegler and D.A. Sahakyan, Toric complete intersections and weighted projective space, J. Geom. Phys.46 (2003) 159 [math.AG/0103214] [SPIRES]. · Zbl 1061.14037 · doi:10.1016/S0393-0440(02)00124-9
[27] M. Kreuzer and B. Nill, Classification of toric Fano 5-folds, math.AG/0702890 [SPIRES]. · Zbl 1193.14067
[28] W. Fulton, Introduction to toric varieties, Princeton University Press, Princeton U.S.A. (1993). · Zbl 0813.14039
[29] T. Oda, Convex bodies and algebraic geometry, Springer-Verlag, Germany (1988). · Zbl 0628.52002
[30] D. Cox, Recent developments in toric geometry, alg-geom/9606016. · Zbl 0899.14025
[31] V. Bouchard, Lectures on complex geometry, Calabi-Yau manifolds and toric geometry, hep-th/0702063 [SPIRES].
[32] P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: a special corner in the landscape, Adv. Theor. Math. Phys.12 (2008) 2 [arXiv:0706.3134] [SPIRES].
[33] V. Braun, P. Candelas and R. Davies, A three-generation Calabi-Yau manifold with small Hodge numbers, arXiv:0910.5464 [SPIRES]. · Zbl 1194.14061
[34] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom.3 (1994) 493 [alg-geom/9310003] [SPIRES]. · Zbl 0829.14023
[35] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math.146 (1981) 271. · Zbl 0469.14018 · doi:10.1007/BF02392466
[36] K. Hori at al., Mirror symmetry, American Mathematical Society, Providence U.S.A. (2003) [SPIRES]. · Zbl 1044.14018
[37] P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory, Nucl. Phys.B 416 (1994) 414 [hep-th/9309097] [SPIRES]. · Zbl 0899.32006 · doi:10.1016/0550-3213(94)90321-2
[38] D. Cox and S. Katz, Mirror symmetry and algebraic geometry, American Mathematical Society, Providence U.S.A. (1999) [SPIRES]. · Zbl 0951.14026
[39] Reid, M., Decomposition of toric morphisms, No. 36, 395 (1983), Boston U.S.A., Basel Switzerland and Berlin Germany · Zbl 0571.14020
[40] M. Kreuzer and H. Skarke, PALP: a Package for Analyzing Lattice Polytopes with applications to toric geometry, Comput. Phys. Commun.157 (2004) 87 [math.NA/0204356] [SPIRES]. · Zbl 1196.14007 · doi:10.1016/S0010-4655(03)00491-0
[41] L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The edge of supersymmetry: stability walls in heterotic theory, Phys. Lett.B 677 (2009) 190 [arXiv:0903.5088] [SPIRES].
[42] L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability walls in heterotic theories, JHEP09 (2009) 026 [arXiv:0905.1748] [SPIRES]. · doi:10.1088/1126-6708/2009/09/026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.