×

zbMATH — the first resource for mathematics

Operator product expansion algebra. (English) Zbl 1287.81085
The operator product expansion (OPE) in quantum field theory has been introduced and first studied by K. G. Wilson and W. Zimmermann in 1970–71. It seems helpful for practical calculations as well as getting a deeper understanding of the mathematical structure. Originally, it was suggested that the OPE should be an asymptotic expansion. However, in 2012, S. Hollands and C. Kopper showed, within the framework of the massive Euclidean \(\phi^4\)-quantum field theory in four dimensions, that the Wilson 2-point operator product expansion is not only an asymptotic expansion at short distances as previously believed, but even converges at arbitrary finite distances. This result is now extended to the N-point OPE, and so the first result of this paper is the convergence proof in perturbative QFT to more than two points, though in order to simplify the discussion, Holland and Hollands restrict to \(N=3\). For concreteness they restrict their attention to the case of massive 4-dimensional \(\phi^4\)-theory. The second aim of this paper is to clarify the nature of the algebraic relations of the OPE coefficients. Much of the proof is based on the Wilson-Wegner-Polchinki renormalization group flow equation.

MSC:
81T17 Renormalization group methods applied to problems in quantum field theory
81T08 Constructive quantum field theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Wilson, K. G., Phys. Rev. B, 4, 3174, (1971) · Zbl 1236.82017
[2] Wilson, K. G., Phys. Rev. B, 4, 3184, (1971) · Zbl 1236.82016
[3] Zimmermann, W., Lectures on Elementary Particles and Quantum Field Theory: Brandeis Summer Institute in Theoretical Physics, (1970), MIT Press: MIT Press, Cambridge, Massachusetts
[4] Hollands, S.; Kopper, C., Commun. Math. Phys., 313, 257, (2012), 10.1007/s00220-012-1457-4; Hollands, S.; Kopper, C., Commun. Math. Phys., 313, 257, (2012), 10.1007/s00220-012-1457-4; · Zbl 1332.81119
[5] Bostelmann, H., J. Math. Phys., 46, 082304, (2005), 10.1063/1.2007567; Bostelmann, H., J. Math. Phys., 46, 082304, (2005), 10.1063/1.2007567; · Zbl 1110.81133
[6] Huang, Y.-Z.; Kong, L., Commun. Math. Phys., 272, 345, (2007), 10.1007/s00220-007-0224-4; Huang, Y.-Z.; Kong, L., Commun. Math. Phys., 272, 345, (2007), 10.1007/s00220-007-0224-4; · Zbl 1153.17012
[7] Polchinski, J., Nucl. Phys., B231, 269, (1984)
[8] Wegner, F. J.; Houghton, A., Phys. Rev. A, 8, 401, (1973)
[9] Wetterich, C., Phys. Lett., B301, 90, (1993)
[10] Müller, V. F., Rev. Math. Phys., 15, 491, (2003), 10.1142/S0129055X03001692; Müller, V. F., Rev. Math. Phys., 15, 491, (2003), 10.1142/S0129055X03001692; · Zbl 1081.81543
[11] Hollands, S., SIGMA, 5, 090, (2009), 10.3842/SIGMA.2009.090; Hollands, S., SIGMA, 5, 090, (2009), 10.3842/SIGMA.2009.090; · Zbl 1188.81127
[12] Haag, R., Local Quantum Physics: Fields, Particles, Algebras, (1992), Springer-Verlag · Zbl 0777.46037
[13] Keller, G.; Kopper, C.; Salmhofer, M., Helv. Phys. Acta, 65, 32, (1992)
[14] Kopper, C., Renormierungstheorie mit Flussgleichungen, (1997), Shaker
[15] Kopper, C.; Müller, V. F.; Reisz, T., Ann. Henri Poincare, 2, 387, (2001), 10.1007/PL00001039; Kopper, C.; Müller, V. F.; Reisz, T., Ann. Henri Poincare, 2, 387, (2001), 10.1007/PL00001039; · Zbl 1019.81034
[16] Keller, G.; Kopper, C., Commun. Math. Phys., 153, 245, (1993) · Zbl 0793.47061
[17] Keller, G.; Kopper, C., Commun. Math. Phys., 148, 445, (1992) · Zbl 0755.60100
[18] Kopper, C., Commun. Math. Phys., 295, 669, (2010) · Zbl 1192.81223
[19] Sansone, G., Orthogonal Functions, 9, (1991), Dover Publications
[20] Hollands, S.; Olbermann, H., J. Math. Phys., 50, 112304, (2009), 10.1063/1.3255442; Hollands, S.; Olbermann, H., J. Math. Phys., 50, 112304, (2009), 10.1063/1.3255442; · Zbl 1304.81113
[21] Hollands, S.; Wald, R. M., Commun. Math. Phys., 293, 85, (2010), 10.1007/s00220-009-0880-7; Hollands, S.; Wald, R. M., Commun. Math. Phys., 293, 85, (2010), 10.1007/s00220-009-0880-7; · Zbl 1193.81076
[22] Guida, R.; Kopper, C.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.