zbMATH — the first resource for mathematics

An improved meshless method with almost interpolation property for isotropic heat conduction problems. (English) Zbl 1287.80007
Summary: In the paper an improved element free Galerkin method is presented for heat conduction problems with heat generation and spatially varying conductivity. In order to improve computational efficiency of meshless method based on Galerkin weak form, the nodal influence domain of meshless method is extended to have arbitrary polygon shape. When the dimensionless size of the nodal influence domain approaches 1, the Gauss quadrature point only contributes to those nodes in whose background cell the Gauss quadrature point is located. Thus, the bandwidth of global stiff matrix decreases obviously and the node search procedure is also avoided. Moreover, the shape functions almost possess the Kronecker delta function property, and essential boundary conditions can be implemented without any difficulties. Numerical results show that arbitrary polygon shape nodal influence domain not only has high computational accuracy, but also enhances computational efficiency of meshless method greatly.

80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI
[1] W. Q. Tao. Numerical Heat Transfer, second ed., Xi’An Jiaotong University Press, Xi’An, 2001
[2] Lewis, R. W.; Nithiarasu, P.; Seetharamu, K. N., Fundamentals of the finite element method for heat and fluid flow, (2004), Wiley Chichester, England
[3] Kassab, Alain J.; Divo, Eduardo, A generalized boundary integral equation for isotropic heat conduction with spatially varying thermal conductivity, Eng. Anal. Boundary Elem, 18, 273-286, (1996)
[4] Divo, Eduardo; Kassab, Alain J., Generalized boundary integral equation for heat conduction in non-homogeneous media: recent developments on the sifting property, Eng Anal Boundary Elem, 22, 221-234, (1998) · Zbl 0963.74564
[5] Vinh, P. N.; Timon, R.; StĂ©phane, B.; Marc, D., Meshless methods: a review and computer implementation aspects, Math. Comput Simulation, 79, 763-813, (2008) · Zbl 1152.74055
[6] Liu, G. R.; Gu., Y. T., An introduction to meshfree methods and their programming, (2005), Springer Netherlands
[7] Atluri, S. N.; Zhu., T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 117-127, (1998) · Zbl 0932.76067
[8] Li, S. F.; Liu., W. K., Meshfree particle methods, (2004), Springer Berlin · Zbl 1073.65002
[9] Liew, K. M.; Zhao, X.; Ferreira, Antonio J. M., A review of meshless methods for laminated and functionally graded plates and shells, Compos Struct, 93, 2031-2041, (2011)
[10] Singh, A.; Singh, I. V.; Prakask, R., Meshless element free Galerkin method for unsteady nonlinear heat transfer problems, Int J Heat Mass Transfer, 50, 1212-1219, (2007) · Zbl 1124.80366
[11] Gao., X. W., A meshless BEM for isotropic heat conduction problems with heat generation and spatially varying conductivity, Int J Numer Methods Eng, 66, 1411-1431, (2006) · Zbl 1116.80021
[12] Yang, K.; Gao, X. W., Radial integration BEM for transient heat conduction problems, Eng Anal Boundary Elem, 34, 557-563, (2010) · Zbl 1267.80017
[13] Wu, X. H.; Tao, W. Q., Meshless method based on the local weak-forms for steady-state heat conduction problems, Int J Heat Mass Transfer, 51, 3103-3112, (2008) · Zbl 1144.80356
[14] Soleimani, S.; Jalaal, M.; Bararnia, H.; Ghasemi, E.; Ganji, D. D.; Mohammadi., F., Local RBF-DQ method for two-dimensional transient heat conduction problems, Int J Heat Mass Transfer, 37, 1411-1418, (2010)
[15] Bararnia, H.; Jalaal, M.; Ghasemi, E.; Soleimani, S.; Ganji, D. D.; Mohammadi, F., Numerical simulation of joule heating phenomenon using meshless RBF-DQ method, Int J Therm Sci, 49, 2117-2127, (2010)
[16] Skouras, E. D.; Bourantas, G. C.; Loukopoulos, V. C.; Nikiforidis, G. C., Truly meshless localized type techniques for the steady-state heat conduction problems for isotropic and functionally graded materials, Eng Anal Boundary Elem, 35, 452-464, (2011) · Zbl 1259.80029
[17] Li, Q. H.; Chen, S. S.; Kou, G. X., Transient heat conduction analysis using the MLPG method and modified precise time step integration method, J Comput Phys, 230, 2736-2750, (2011) · Zbl 1218.65108
[18] Chen, L.; Liew., K. M., A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems, Comput Mech, 47, 455-467, (2011) · Zbl 1241.80005
[19] Shibahara, M.; Atluri., S. N., The meshless local Petrov-Galerkin method for the analysis of heat conduction due to a moving heat source, in welding, Int J Therm Sci, 50, 984-992, (2011)
[20] Khosravifard, A.; Hematiyan, M. R.; Marin, L., Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method, Appl Math Modelling, 35, 4157-4174, (2011) · Zbl 1225.74033
[21] Zhang, X. H.; Ouyang, J.; Zhang, L., Matrix free meshless method for transient heat conduction problems, Int J Heat Mass Transfer, 52, 2161-2165, (2009) · Zbl 1157.80382
[22] Belytschko, T.; Krongauz, Y.; Organ, M.; Liu, W. K., Smoothing and accelerated computations in the element-free Galerkin method, J Comput Appl Math, 74, 1, 111-126, (1996) · Zbl 0862.73058
[23] Q. H. Zeng. Parallel algorithms and parallel implementation of meshless numerical simulation. PhD thesis, University of Science and Technology of China, Hefei, 2006.
[24] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless method: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 1-4, 3-47, (1996) · Zbl 0891.73075
[25] Zhang, L.; Ouyang, J.; Jiang, T.; Ruan, C. L., Variational multiscale element free Galerkin method for the water wave problems, J Comput Phys., 230, 5045-5060, (2011) · Zbl 1416.76134
[26] Ochiai, Y., Two-dimensional steady heat conduction in functionally gradient materials by triple-reciprocity boundary element method, Eng Anal Boundary Elem, 28, 1445-1453, (2004) · Zbl 1151.80328
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.