×

zbMATH — the first resource for mathematics

Travelling convectons in binary fluid convection. (English) Zbl 1287.76105
Summary: Binary fluid mixtures with a negative separation ratio heated from below exhibit steady spatially localized states called convectons for supercritical Rayleigh numbers. With no-slip, fixed-temperature, no-mass-flux boundary conditions at the top and bottom stationary odd- and even-parity convectons fall on a pair of intertwined branches connected by branches of travelling asymmetric states. In appropriate parameter regimes the stationary convectons may be stable. When the boundary condition on the top is changed to Newton’s law of cooling the odd-parity convectons start to drift and the branch of odd-parity convectons breaks up and reconnects with the branches of asymmetric states. We explore the dependence of these changes and of the resulting drift speed on the associated Biot number using numerical continuation, and compare and contrast the results with a related study of the Swift-Hohenberg equation by S. M. Houghton and E. Knobloch [Phys. Rev. E 84, 016204-1-10 (2011)]. We use the results to identify stable drifting convectons and employ direct numerical simulations to study collisions between them. The collisions are highly inelastic, and result in convectons whose length exceeds the sum of the lengths of the colliding convectons.

MSC:
76E06 Convection in hydrodynamic stability
76R10 Free convection
76M22 Spectral methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112090000799 · doi:10.1017/S0022112090000799
[2] DOI: 10.1086/172052 · doi:10.1086/172052
[3] DOI: 10.1137/080724344 · Zbl 1167.76016 · doi:10.1137/080724344
[4] DOI: 10.1137/080713306 · Zbl 1200.37015 · doi:10.1137/080713306
[5] DOI: 10.1017/S0022112006002795 · Zbl 1105.76026 · doi:10.1017/S0022112006002795
[6] Phys. Rev. Lett. 104 pp 104501-1–4– (2010)
[7] Phys. Fluids 23 pp 094102-1–13– (2011)
[8] DOI: 10.1103/PhysRevLett.63.1954 · doi:10.1103/PhysRevLett.63.1954
[9] Phys. Rev. Lett. 94 pp 184503-1–4– (2005)
[10] Phys. Rev. E 65 pp 016303-1–19– (2001)
[11] DOI: 10.1017/S0022112081003595 · Zbl 0484.76088 · doi:10.1017/S0022112081003595
[12] DOI: 10.1017/S0022112006000759 · Zbl 1122.76029 · doi:10.1017/S0022112006000759
[13] Discrete and Contin. Dyn. Syst. Suppl. pp 109– (2009)
[14] Buescu, Bifurcation, Symmetry and Patterns pp 189– (2000)
[15] Phys. Fluids 17 (2005)
[16] DOI: 10.1016/j.physleta.2006.08.072 · Zbl 1236.35144 · doi:10.1016/j.physleta.2006.08.072
[17] DOI: 10.1103/PhysRevLett.64.1365 · doi:10.1103/PhysRevLett.64.1365
[18] Phys. Rev. Lett. 95 pp 244501-1–4– (2005)
[19] Phys. Rev. E 73 pp 056211-1–15– (2006)
[20] Discrete Contin. Dyn. Syst. Suppl. S4 pp 1213– (2011)
[21] DOI: 10.1103/PhysRevE.51.5662 · doi:10.1103/PhysRevE.51.5662
[22] SIAM J. Appl. Dyn. Syst. 11 pp 261– (2011)
[23] DOI: 10.1017/S0022112010004623 · Zbl 1225.76107 · doi:10.1017/S0022112010004623
[24] DOI: 10.1016/S0375-9601(99)00573-3 · Zbl 0947.76096 · doi:10.1016/S0375-9601(99)00573-3
[25] Fluid Dyn. Res. 42 pp 025505-1–10– (2010)
[26] Phys. Fluids 20 pp 034102-1–8– (2008)
[27] Phys. Rev. E 80 pp 025201(R)-1–4– (2009)
[28] DOI: 10.1002/fld.1196 · Zbl 1106.76051 · doi:10.1002/fld.1196
[29] DOI: 10.1063/1.868730 · Zbl 0836.76033 · doi:10.1063/1.868730
[30] DOI: 10.1016/j.physd.2010.06.014 · Zbl 1213.37033 · doi:10.1016/j.physd.2010.06.014
[31] DOI: 10.1017/jfm.2011.402 · Zbl 1241.76454 · doi:10.1017/jfm.2011.402
[32] Phys. Fluids 22 pp 073601-1–13– (2010)
[33] DOI: 10.1103/PhysRevLett.83.3190 · doi:10.1103/PhysRevLett.83.3190
[34] DOI: 10.1038/369215a0 · doi:10.1038/369215a0
[35] DOI: 10.1017/S0022112083003067 · doi:10.1017/S0022112083003067
[36] DOI: 10.1016/0167-2789(89)90140-1 · doi:10.1016/0167-2789(89)90140-1
[37] DOI: 10.1103/PhysRevE.48.R665 · doi:10.1103/PhysRevE.48.R665
[38] DOI: 10.1103/PhysRevA.44.6466 · doi:10.1103/PhysRevA.44.6466
[39] DOI: 10.1103/PhysRevLett.66.1165 · doi:10.1103/PhysRevLett.66.1165
[40] Europhys. Lett. 80 pp 14002-1–6– (2007)
[41] DOI: 10.1016/j.physd.2008.11.010 · Zbl 1167.37043 · doi:10.1016/j.physd.2008.11.010
[42] DOI: 10.1017/jfm.2012.413 · Zbl 1275.76095 · doi:10.1017/jfm.2012.413
[43] DOI: 10.1002/(SICI)1097-0363(19980915)28:3&lt;501::AID-FLD730&gt;3.0.CO;2-S · Zbl 0932.76065 · doi:10.1002/(SICI)1097-0363(19980915)28:3<501::AID-FLD730>3.0.CO;2-S
[44] Phys. Rev. E 65 pp 046606-1–11– (2002)
[45] Phys. Rev. E 84 pp 016204-1–10– (2011)
[46] DOI: 10.1038/382793a0 · doi:10.1038/382793a0
[47] DOI: 10.1016/S0167-2789(98)90013-6 · Zbl 0825.35107 · doi:10.1016/S0167-2789(98)90013-6
[48] New J. Phys. 14 pp 093055-1–23– (2012)
[49] DOI: 10.1063/1.869354 · doi:10.1063/1.869354
[50] DOI: 10.1103/PhysRevA.43.7101 · doi:10.1103/PhysRevA.43.7101
[51] DOI: 10.1016/j.mechrescom.2009.11.002 · Zbl 1272.76119 · doi:10.1016/j.mechrescom.2009.11.002
[52] DOI: 10.1103/PhysRevA.38.3143 · doi:10.1103/PhysRevA.38.3143
[53] DOI: 10.1016/0167-2789(89)90143-7 · doi:10.1016/0167-2789(89)90143-7
[54] DOI: 10.1103/PhysRevA.40.1549 · doi:10.1103/PhysRevA.40.1549
[55] Phys. Rev. E 78 pp 046201-1–16– (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.