×

zbMATH — the first resource for mathematics

Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows. (English) Zbl 1287.76098
Summary: We consider the development of nonlinear three-dimensional vortex-wave interaction equilibria of laminar plane Couette flow for a range of spanwise wavenumbers. The results are computed using a hybrid approach that captures the required asymptotic structure while at the same time providing a direct link with full numerical calculations of equilibrium states. Each equilibrium state consists of a streak flow, a roll flow and a wave propagating on the streak. Direct numerical simulations at finite Reynolds numbers using initial conditions constructed from these parts confirm that the scheme generates equilibrium solutions of the Navier-Stokes equations. Consideration of the form of the vortex-wave interaction equations in the high-spanwise-wavenumber limit predicts that for small wavelengths the equilibria take on a self-similar structure confined near the centre of the flow. These states feel no influence from the walls, and lead to a class of canonical states relevant to arbitrary shear flows. These predictions are supported by an analysis of computational results at increasing values of the spanwise wavenumber. For the wave part of these new canonical states, it is shown that the mass-specific kinetic energy density per unit wavenumber scales with the -5/3 power of the wavenumber.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1098/rspa.1988.0060 · Zbl 0657.76047 · doi:10.1098/rspa.1988.0060
[2] DOI: 10.1017/S0022112010002892 · Zbl 1205.76085 · doi:10.1017/S0022112010002892
[3] DOI: 10.1017/S0022112091003725 · Zbl 0738.76029 · doi:10.1017/S0022112091003725
[4] DOI: 10.1017/S0022112009990863 · Zbl 1183.76688 · doi:10.1017/S0022112009990863
[5] DOI: 10.1103/PhysRevLett.91.224502 · doi:10.1103/PhysRevLett.91.224502
[6] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 · doi:10.1017/S0022112004009346
[7] DOI: 10.1017/S0022112091000289 · Zbl 0721.76027 · doi:10.1017/S0022112091000289
[8] J. Fluid Mech. 435 pp 93– (2001)
[9] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[10] DOI: 10.1098/rsta.2008.0216 · Zbl 1221.76097 · doi:10.1098/rsta.2008.0216
[11] DOI: 10.1017/S0022112090000829 · doi:10.1017/S0022112090000829
[12] Dokl. Akad. Nauk SSSR 30 pp 301– (1941)
[13] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[14] DOI: 10.1103/PhysRevLett.98.204501 · doi:10.1103/PhysRevLett.98.204501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.