zbMATH — the first resource for mathematics

Top-\(k\) ranked document search in general text databases. (English) Zbl 1287.68035
de Berg, Mark (ed.) et al., Algorithms – ESA 2010. 18th annual European symposium, Liverpool, UK, September 6–8, 2010. Proceedings, Part II. Berlin: Springer (ISBN 978-3-642-15780-6/pbk). Lecture Notes in Computer Science 6347, 194-205 (2010).
Summary: Text search engines return a set of \(k\) documents ranked by similarity to a query. Typically, documents and queries are drawn from natural language text, which can readily be partitioned into words, allowing optimizations of data structures and algorithms for ranking. However, in many new search domains (DNA, multimedia, OCR texts, Far East languages) there is often no obvious definition of words and traditional indexing approaches are not so easily adapted, or break down entirely. We present two new algorithms for ranking documents against a query without making any assumptions on the structure of the underlying text. We build on existing theoretical techniques, which we have implemented and compared empirically with new approaches introduced in this paper. Our best approach is significantly faster than existing methods in RAM, and is even three times faster than a state-of-the-art inverted file implementation for English text when word queries are issued.
For the entire collection see [Zbl 1194.68068].

68P15 Database theory
68P20 Information storage and retrieval of data
Full Text: DOI