×

Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. (English) Zbl 1286.76179

Summary: We present the special space-time computational techniques we have introduced recently for computational aerodynamics modeling of flapping wings of an actual locust. These techniques have been designed to be used with the deforming-spatial-domain/stabilized space-time (DSD/SST) formulation, which is the core computational technique. The DSD/SST formulation was developed for flow problems with moving interfaces and was elevated to newer versions over the years, including the space-time version of the residual-based variational multiscale (VMS) method, which is called “DSD/SST-VMST” and used in the computations reported here. The special space-time techniques are based on using, in the space-time flow computations, NURBS basis functions for the temporal representation of the motion and deformation of the locust wings. The motion and deformation data is extracted from the high-speed, multi-camera video recordings of a locust in a wind tunnel. In addition, temporal NURBS basis functions are used in representation of the motion and deformation of the volume meshes computed and also in remeshing. These ingredients provide an accurate and efficient way of dealing with the wind tunnel data and the mesh. The computations demonstrate the effectiveness of the core and special space-time techniques in modeling the aerodynamics of flapping wings, with the wing motion and deformation coming from an actual locust.

MSC:

76Z10 Biopropulsion in water and in air
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi: 10.1016/S0065-2156(08)70153-4 · Zbl 0747.76069
[2] Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces: the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi: 10.1016/0045-7825(92)90059-S · Zbl 0745.76044
[3] Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces: the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi: 10.1016/0045-7825(92)90060-W · Zbl 0745.76045
[4] Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi: 10.1002/fld.505 · Zbl 1032.76605
[5] Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi: 10.1002/fld.1430 · Zbl 1144.74044
[6] Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267. doi: 10.1007/s00466-011-0571-z · Zbl 1398.76128
[7] Takizawa K and Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci. doi: 10.1142/S0218202512300013 · Zbl 1248.76118
[8] Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349 · Zbl 0482.76039
[9] Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019 · Zbl 0971.74032
[10] van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27: 599–621 · Zbl 1136.65334
[11] Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322 · Zbl 1161.74020
[12] Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds) Fluid–Structure Interaction, vol 53 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, pp 82–100 · Zbl 1323.74091
[13] Sawada T, Hisada T (2007) Isogeometric fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking finite element method. Comput Fluids 36: 136–146 · Zbl 1181.76099
[14] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37 · Zbl 1169.74015
[15] Dettmer WG, Peric D (2008) On the oupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90 · Zbl 1235.74272
[16] Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43: 91–101 · Zbl 1309.76126
[17] Sternel DC, Schaefer M, Heck M, Yigit S (2008) Efficiency and accuracy of fluid–structure interaction simulations using an implicit partitioned approach. Comput Mech 43: 103–113 · Zbl 1234.74053
[18] Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550 · Zbl 1229.74096
[19] Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89 · Zbl 1398.92056
[20] Calderer R, Masud A (2010) A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput Mech 46: 185–197 · Zbl 1301.76057
[21] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16 · Zbl 1301.92014
[22] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498
[23] Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235. doi: 10.1002/fld.2400 · Zbl 1428.76086
[24] Bazilevs Y, Hsu M-C, Kiendl J, uchner RW, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253 · Zbl 1428.76087
[25] Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47: 593–599
[26] Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech 48: 269–276. doi: 10.1007/s00466-011-0620-7 · Zbl 1398.76119
[27] Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32: 199–259 · Zbl 0497.76041
[28] Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi: 10.1016/0045-7825(92)90141-6 · Zbl 0756.76048
[29] Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Methods Fluids 15: 1073–1118. doi: 10.1002/fld.1650150911
[30] Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282. doi: 10.1016/0045-7825(94)90029-9 · Zbl 0846.76048
[31] Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412. doi: 10.1007/BF00350249 · Zbl 0893.76046
[32] Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274. doi: 10.1016/S0045-7825(98)00299-0 · Zbl 0959.76037
[33] Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130. doi: 10.1007/BF02897870 · Zbl 1039.76037
[34] Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200. doi: 10.1016/S0045-7825(00)00388-1 · Zbl 1012.76042
[35] Tezduyar TE, Behr M, Mittal S, and Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: space–time formulations, iterative strategies and massively parallel implementations. In New methods in transient analysis, 246(143), ASME, New York, pp 7–24
[36] Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36. doi: 10.1109/2.237441 · Zbl 05090697
[37] Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94. doi: 10.1016/0045-7825(94)00077-8 · Zbl 0848.76036
[38] Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134: 351–373. doi: 10.1016/0045-7825(95)00988-4 · Zbl 0895.76046
[39] Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340. doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C
[40] Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63. doi: 10.1115/11530635 · Zbl 1110.74689
[41] Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032. doi: 10.1016/j.cma.2003.12.046 · Zbl 1067.74587
[42] Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi: 10.1016/0045-7825(94)00082-4 · Zbl 0848.76040
[43] Guler I, Behr M, Tezduyar T (1999) Parallel finite element computation of free-surface flows. Comput Mech 23: 117–123. doi: 10.1007/s004660050391 · Zbl 0948.76039
[44] Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36: 2–11. doi: 10.1016/j.compfluid.2005.07.008 · Zbl 1181.76105
[45] Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21: 783–805. doi: 10.1002/fld.1650211003 · Zbl 0862.76033
[46] Tezduyar T, Osawa Y (2001) The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 705–716. doi: 10.1016/S0045-7825(01)00310-3 · Zbl 1113.76406
[47] Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 333–344. doi: 10.1007/s00466-011-0589-2 · Zbl 1398.76127
[48] Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 647–657. doi: 10.1007/s00466-011-0614-5 · Zbl 1334.74032
[49] Aliabadi SK, Tezduyar TE (1993) Space–time finite element computation of compressible flows involving moving boundaries and interfaces. Comput Methods Appl Mech Eng 107: 209–223. doi: 10.1016/0045-7825(93)90176-X · Zbl 0798.76037
[50] Kashiyama K, Saitoh K, Behr M, Tezduyar TE (1997) Parallel finite element methods for large-scale computation of storm surges and tidal flows. Int J Numer Methods Fluids 24: 1371–1389. doi: 10.1002/(SICI)1097-0363(199706)24:12<1371::AID-FLD565>3.0.CO;2-7 · Zbl 0881.76052
[51] Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space–time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48: 293–306. doi: 10.1007/s00466-011-0618-1 · Zbl 1398.76126
[52] Johnson AA, Tezduyar TE (1997) simulation of fluid-particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145:301–321. doi: 10.1016/S0045-7825(96)01223-6
[53] Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi: 10.1007/s004660050393 · Zbl 0949.76049
[54] Johnson A, Tezduyar T (2001) Methods for 3D computation of fluid-object interactions in spatially-periodic flows. Comput Methods Appl Mech Eng 190: 3201–3221. doi: 10.1016/S0045-7825(00)00389-3 · Zbl 0971.76048
[55] Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows–Fluid-structure interactions. Int J Numer Methods Fluids 21: 933–953. doi: 10.1002/fld.1650211011 · Zbl 0873.76047
[56] Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi: 10.1016/S0045-7825(00)00204-8 · Zbl 0993.76044
[57] Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D Computation. Comput Methods Appl Mech Eng 190: 373–386. doi: 10.1016/S0045-7825(00)00208-5 · Zbl 0973.76055
[58] Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726. doi: 10.1016/S0045-7825(01)00311-5 · Zbl 1113.76407
[59] Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi: 10.1016/j.cma.2004.09.014 · Zbl 1118.74052
[60] Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753. doi: 10.1016/j.cma.2005.08.023 · Zbl 1123.76035
[61] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi: 10.1016/j.cma.2005.05.050 · Zbl 1178.76241
[62] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi: 10.1007/s00466-006-0065-6 · Zbl 1160.76061
[63] Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206. doi: 10.1016/j.compfluid.2005.02.011 · Zbl 1177.76202
[64] Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi: 10.1002/fld.1443 · Zbl 1276.76043
[65] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi: 10.1016/j.compfluid.2005.07.014 · Zbl 1113.76105
[66] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm: dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi: 10.1002/fld.1497 · Zbl 1317.76107
[67] Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80. doi: 10.1007/s00466-008-0276-0 · Zbl 1279.76024
[68] Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi: 10.1007/s00466-008-0261-7 · Zbl 1310.74049
[69] Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142. doi: 10.1007/s00466-008-0260-8 · Zbl 1209.74022
[70] Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60. doi: 10.1007/s00466-008-0299-6 · Zbl 1297.74129
[71] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi: 10.1007/s00466-008-0325-8 · Zbl 1169.74032
[72] Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi: 10.1016/j.cma.2008.05.024 · Zbl 1229.74100
[73] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi: 10.1016/j.cma.2008.08.020 · Zbl 1229.74101
[74] Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204. doi: 10.1115/1.3059576
[75] Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi: 10.1002/cnm.1241 · Zbl 1180.92023
[76] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi: 10.1007/s00466-009-0423-2 · Zbl 1261.92010
[77] Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi: 10.1007/s00466-009-0425-0 · Zbl 1301.92019
[78] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi: 10.1002/cnm.1289 · Zbl 1183.92050
[79] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89. doi: 10.1007/s00466-009-0426-z · Zbl 1301.76087
[80] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi: 10.1007/s00466-009-0439-7 · Zbl 1301.92020
[81] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218. doi: 10.1002/fld.2221 · Zbl 1427.76148
[82] Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285. doi: 10.1002/fld.2348 · Zbl 1428.76011
[83] Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi: 10.1002/fld.2360 · Zbl 1203.92044
[84] Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi: 10.1002/fld.2359 · Zbl 1426.76312
[85] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi: 10.1002/fld.2415 · Zbl 1427.76285
[86] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65: 324–340. doi: 10.1002/fld.2448 · Zbl 1203.92045
[87] Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27: 1665–1710. doi: 10.1002/cnm.1433 · Zbl 1244.92036
[88] Takizawa K, Spielman T, Tezduyar TE (2011) Space–timeFSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364. doi: 10.1007/s00466-011-0590-9 · Zbl 1398.74095
[89] Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79: 010907. doi: 10.1115/1.4005070
[90] Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79: 010908. doi: 10.1115/1.4005071 · Zbl 1244.92036
[91] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48: 377–384. doi: 10.1007/s00466-011-0619-0 · Zbl 1398.76115
[92] Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19: 125–169. doi: 10.1007/s11831-012-9070-4 · Zbl 1354.76113
[93] Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19: 171–225. doi: 10.1007/s11831-012-9071-3 · Zbl 1354.92023
[94] Wu TY (2011) Fish swimming and bird/insect flight. Ann Rev Fluid Mech 43: 25–58 · Zbl 1210.76095
[95] Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401 · Zbl 0866.76044
[96] Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799 · Zbl 1184.76237
[97] Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201 · Zbl 1169.76352
[98] Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent taylor–couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414 · Zbl 1290.76037
[99] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195 · Zbl 1151.74419
[100] Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150 · Zbl 1171.76043
[101] Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79: 010903. doi: 10.1115/1.4005073 · Zbl 1286.76179
[102] Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20: 359–392 · Zbl 0915.68129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.