×

zbMATH — the first resource for mathematics

Variationally consistent eXtended FE model for 3D planar and curved imperfect interfaces. (English) Zbl 1286.74095
Summary: We propose an eXtended Finite Element Method convergent to the asymptotic solution of a thin interface problem for both planar and curved imperfect interfaces in three dimensions. The main advantage over standard cohesive-zone models is the bulk-mesh size independence. With respect to standard eXtended Finite Element Method, in the proposed procedure, blending and quadrature sub-domains are not required. The focus is on the evaluation of the accuracy of the proposed approach in solving three-dimensional benchmark tests. The numerical results are compared with those available from analytical solutions and spring-like interface models.
Reviewer: Reviewer (Berlin)

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74A50 Structured surfaces and interfaces, coexistent phases
Software:
CUBPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eshelby, J., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 241, 376-396, (1957) · Zbl 0079.39606
[2] Eshelby, J., The elastic field outside an ellipsoidal inclusion, Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 252, 561-569, (1959) · Zbl 0092.42001
[3] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 571-574, (1973)
[4] Mura, T.; Furuhashi, R., The elastic inclusion with a sliding interface, J. Appl. Mech., 51, 308-310, (1984) · Zbl 0544.73018
[5] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Sol., 11, 127-140, (1990) · Zbl 0108.36902
[6] Hashin, Z., The spherical inclusion with imperfect interface, J. Appl. Mech., 58, 444-449, (1991)
[7] Klarbring, A., Derivation of a model of adhesively bonded joints by the asymptotic expansion method, Int. J. Eng. Sci., 29, 493-512, (1991) · Zbl 0762.73069
[8] Bigoni, D.; Serkov, S.; Movchan, A.; Valentini, M., Asymptotic models of dilute composites with imperfectly bonded inclusions, Int. J. Sol. Struct., 35, 3239-3258, (1998) · Zbl 0918.73042
[9] Geymonat, G.; Krasucki, F.; Lenci, S., Mathematical analysis of a bonded joint with a soft thin adhesive, Math. Mech. Solids, 4, 201-225, (1999) · Zbl 1001.74591
[10] Benveniste, Y.; Miloh, T., The effective mechanical behavior of composite materials with imperfect contact between the constituents, Mech. Mat., 33, 309-323, (2001)
[11] Caillerie, D., The effect of a thin inclusion of high rigidity in an elastic body, Math. Methods Appl. Sci., 2, 251-270, (1980) · Zbl 0446.73014
[12] E. Acerbi, G. Buttazzo, Reinforcement problems in the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) 273-284. · Zbl 0607.73018
[13] Suquet, P., Discontinuities and plasticity, (1988), Springer Verlag Wien New York · Zbl 0667.73025
[14] Lebon, F.; Rizzoni, R., Asymptotic analysis of a thin interface: the case involving similar rigidity, Int. J. Engrg. Sci., 48, 473-486, (2010) · Zbl 1213.74249
[15] Tomar, V.; Zhai, J.; Zhou, M., Bounds for element size in a variable stiffnesss cohesive finite element model, Int. J. Numer. Methods Engrg., 61, 1894-1920, (2004) · Zbl 1075.74683
[16] Turon, A.; Dàvila, C. G.; Camanho, P.; Costa, J., An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models, Engrg. Fract. Mech., 74, 1665-1682, (2007)
[17] Blal, N.; Daridon, L.; Monerie, Y.; Pagano, S., Artificial compliance inherent to the intrinsic cohesive zone models: criteria and application to planar meshes, Int. J. Fract., 178, 71-83, (2012)
[18] Melenk, J.; Babuska, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314, (1996) · Zbl 0881.65099
[19] Benvenuti, E., A regularized XFEM framework for embedded cohesive interfaces, Comput. Methods Appl. Mech. Engrg., 197, 4367-4378, (2008) · Zbl 1194.74364
[20] Benvenuti, E.; Tralli, A.; Ventura, G., A regularized XFEM framework for embedded cohesive interfaces, Int. J. Numer. Methods Engrg., 197, 4367-4378, (2008) · Zbl 1194.74364
[21] Benvenuti, E., Mesh-size-objective XFEM for regularized continuousdiscontinuous transition, Finite Elem. Anal. Des., 47, 1326-1336, (2011)
[22] Benvenuti, E.; Tralli, A., Simulation of finite-width process zone for concrete-like materials, Comput. Mech., 50, 479-497, (2012) · Zbl 1398.74302
[23] E. Benvenuti, O. Vitarelli, A. Tralli, Delamination of FRP-reinforced concrete by means of an extended finite element formulation, Composites Part B 43 (2012) 3258-3269.
[24] Benvenuti, E.; Ventura, G.; Ponara, N., Finite element quadrature of regularized discontinuous and singular level set functions in 3D problems, Algorithms, 5, 529-544, (2012) · Zbl 07042140
[25] Yvonnet, J.; Quang, H. L.; He, Q.-C., An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Comput. Mech., 42, 119-131, (2008) · Zbl 1188.74076
[26] Löhnert, S.; Müller-Hoeppe, D.; Wriggers, P., 3D corrected XFEM approach and extension to finite deformation theory, Int. J. Numer. Methods Engrg., 86, 431-452, (2011) · Zbl 1216.74026
[27] Zhu, Q. Z.; Gu, S.; Yvonnet, J.; Shao, J.; He, Q., Three-dimensional numerical modelling by XFEM of spring-layer imperfect curved interfaces with applications to linearly elastic composite materials, Int. J. Numer. Methods Engrg., 88, 307-328, (2011) · Zbl 1242.74181
[28] Sukumar, N.; Chopp, D.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite-element method, Comput. Methods Appl. Mech. Engrg., 190, 6183-6200, (2001) · Zbl 1029.74049
[29] T. Belytschko, R. Gracie, G. Ventura, A review of the extended/generalized finite element methods for material modelling, Model. Simul. Mater. Sci. Engrg. 17, doi:10.1088/0965-0393/17/4/043001. · Zbl 1195.74201
[30] Fries, T.; Belytschko, T., The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Engrg., 84, 253-304, (2010) · Zbl 1202.74169
[31] Wells, G.; Sluys, L., A new method for modelling cohesive cracks using finite elements, Int. J. Numer. Methods Engrg., 50, 2667-2682, (2001) · Zbl 1013.74074
[32] Moës, N.; Belytschko, T., Extended finite element method for cohesive crack growth, Engrg. Fract. Mech., 69, 813-833, (2002)
[33] Fries, T., A corrected XFEM approximation without problems in blending elements, Int. J. Numer. Methods Engrg., 75, 503-532, (2007) · Zbl 1195.74173
[34] Ventura, G.; Gracie, R.; Belytschko, T., Fast integration and weight function blending in the extended finite element method, Int. J. Numer. Methods Engrg., 77, 1-29, (2009) · Zbl 1195.74201
[35] Abbas, S.; Alizada, A.; Fries, T., The XFEM for high-gradient solutions in convection-dominated problems, Int. J. Numer. Methods Engrg., 82, 1044-1072, (2010) · Zbl 1188.76224
[36] Vandoren, B.; Proft, K. D.; Simone, A.; Sluys, L., Mesoscopic modelling of masonry using weak and strong discontinuities, Comput. Methods Appl. Mech. Engrg., 255, 167-182, (2013) · Zbl 1297.74100
[37] Iarve, E.; Gurvich, M.; Mollenhauer, D.; Rose, C.; Dávila, C., Mesh-independent matrix cracking and delamination modeling in laminated composites, Int. J. Numer. Methods Engrg., 88, 749-773, (2011) · Zbl 1242.74126
[38] Iarve, E.; Swindeman, M.; Hoos, K., Mesh dependence of the discrete damage modeling in laminated composites, in: 53rd AIAA/ASME/ASCE/AHS/ASC structures 20th, structural dynamics and materials conference, 23-26 April 2012, (2012), Honolulu Hawaii
[39] Osher, S.; Sethian, J., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49, (1988) · Zbl 0659.65132
[40] Patzák, B.; Jirásek, M., Process zone resolution by extended finite elements, Engrg. Fract. Mech., 70, 957-977, (2003)
[41] Ventura, G., On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method, Int. J. Numer. Methods Engrg., 66, 761-795, (2006) · Zbl 1110.74858
[42] Chessa, J.; Wang, H.; Belytschko, T., On the construction of blending elements for local partition of unity enriched finite elements, Int. J. Numer. Methods Engrg., 57, 1015-1038, (2003) · Zbl 1035.65122
[43] Gracie, R.; Wang, H.; Belytschko, T., Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods, Int. J. Numer. Methods Engrg., 74, 1645-1669, (2008) · Zbl 1195.74175
[44] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, J., A computational approach to handle complex microsctructures geometries, Comput. Methods Appl. Mech. Engrg., 192, 3163-3177, (2003) · Zbl 1054.74056
[45] Lian, W.; Legrain, G.; Cartraud, P., Image-based computational homogenization and localization: comparison between X-FEM/levelset and voxel-based approaches, Comput. Mech., 51, 279-293, (2013) · Zbl 06149122
[46] Fries, T.; Belytschko, T., The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns, Int. J. Numer. Methods Engrg., 68, 1358-1385, (2006) · Zbl 1129.74045
[47] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engrg., 46, 131-150, (1999) · Zbl 0955.74066
[48] Mousavi, S.; Sukumar, N., Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method, Comput. Methods Appl. Mech. Engrg., 199, 3237-3249, (2012) · Zbl 1225.74099
[49] Müller, B.; Kummer, F.; Oberlack, M., Simple multidimensional integration of discontinuous functions with application to level set methods, Int. J. Numer. Methods Engrg., 92, 637-651, (2012) · Zbl 1352.65084
[50] Sukumar, N.; Chopp, D.; Moran, B., Extended finite element method and fast marching method for three-dimensional fatigue crack propagation, Engrg. Fract. Mech., 70, 29-48, (2003)
[51] Cools, R.; Haegemans, A., Algorithm 824: CUBPACK: A package for automatic cubature; framework description, ACM Trans. Math. Software, 29, 287-296, (2003) · Zbl 1070.65517
[52] Tornberg, A.; Engquist, B., Regularization techniques for numerical approximation of PDEs with singularities, J. Scient. Comput., 19, 527-552, (2003) · Zbl 1035.65085
[53] Benveniste, Y., The effective mechanical behavior of composite materials with imperfect contact between the constituents, Mech. Mater., 4, 197-208, (1985)
[54] Hashin, Z., Thermoelastic properties of fiber composites with imperfect interface, Mech. Mater., 8, 333-348, (1990)
[55] Zhong, Z.; Meguid, S., On the elastic field of a spherical inhomogeneity with an imperfectly bonded interface, J. Elast., 46, 91-113, (1997) · Zbl 0889.73010
[56] Hashin, Z., Thin interphase/imperfect interface in elasticity with application to coated fiber composites, J. Mech. Phys. Sol., 50, 2509-2537, (2002) · Zbl 1080.74006
[57] Zhu, Q. Z., On enrichment functions in the extended finite element method, Int. J. Numer. Methods Engrg., 91, 186-217, (2012) · Zbl 1246.74066
[58] Kolmogorov, A.; Fomin, S., Introductory real analysis, (1975), Dover
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.