×

Optimal stopping under probability distortion. (English) Zbl 1286.60038

Summary: We formulate an optimal stopping problem for a geometric Brownian motion where the probability scale is distorted by a general nonlinear function. The problem is inherently time inconsistent due to the Choquet integration involved. We develop a new approach, based on a reformulation of the problem where one optimally chooses the probability distribution or quantile function of the stopped state. An optimal stopping time can then be recovered from the obtained distribution/quantile function, either in a straightforward way for several important cases or in general via the Skorokhod embedding. This approach enables us to solve the problem in a fairly general manner with different shapes of the payoff and probability distortion functions. We also discuss economical interpretations of the results. In particular, we justify several liquidation strategies widely adopted in stock trading, including those of “buy and hold,” “cut loss or take profit,” “cut loss and let profit run” and “sell on a percentage of historical high.”

MSC:

60G40 Stopping times; optimal stopping problems; gambling theory
91G80 Financial applications of other theories
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Azéma, J. and Yor, M. (1979). Une solution simple au problème de Skorokhod. In Séminaire de Probabilités , XIII ( Univ. Strasbourg , Strasbourg , 1977 / 78). Lecture Notes in Math. 721 90-115. Springer, Berlin. · Zbl 0414.60055
[2] Barberis, N. (2012). A model of casino gambling. Management Science 58 35-51.
[3] Björk, T., Murgoci, A. and Zhou, X. Y. (2012). Mean-variance portfolio optimization with state dependent risk aversion. Math. Finance . · Zbl 1285.91116
[4] Carlier, G. and Dana, R. A. (2005). Rearrangement inequalities in non-convex insurance models. J. Math. Econom. 41 483-503. · Zbl 1106.91038 · doi:10.1016/j.jmateco.2004.12.004
[5] Castagnoli, E., Maccheroni, F. and Marinacci, M. (2004). Choquet insurance pricing: A caveat. Math. Finance 14 481-485. · Zbl 1134.91400 · doi:10.1111/j.0960-1627.2004.00201.x
[6] Dana, R.-A. (2005). A representation result for concave Schur concave functions. Math. Finance 15 613-634. · Zbl 1142.28001 · doi:10.1111/j.1467-9965.2005.00253.x
[7] Dixit, A. and Pindyck, R. (1994). Investment Under Uncertainty . Princeton Univ. Press, Princeton.
[8] Ekeland, I. and Lazrak, A. (2006). Being serious about non-commitment: Subgame perfect equilibrium in continuous time. Working paper.
[9] Friedman, A. (1975). Stochastic Differential Equations and Applications , Vols. 1 - 2. Academic Press, New York. · Zbl 0323.60056
[10] Hall, W. J. (1969). Embedding submartingales in Wiener processes with drift, with applications to sequential analysis. J. Appl. Probab. 6 612-632. · Zbl 0186.50601 · doi:10.2307/3212107
[11] He, X. D. and Zhou, X. Y. (2009). Hope, fear, and aspiration. Working paper. · Zbl 1403.91313
[12] He, X. D. and Zhou, X. Y. (2011). Portfolio choice via quantiles. Math. Finance 21 203-231. · Zbl 1229.91291 · doi:10.1111/j.1467-9965.2010.00432.x
[13] Henderson, V. (2012). Prospect theory, partial liquidation and the disposition effect. Management Science 58 445-460.
[14] Jin, H. and Zhou, X. Y. (2008). Behavioral portfolio selection in continuous time. Math. Finance 18 385-426. · Zbl 1141.91454 · doi:10.1111/j.1467-9965.2008.00339.x
[15] Jin, H., Xu, Z. and Zhou, X. Y. (2008). A convex stochastic optimization problem arising from portfolio selection. Math. Finance 21 775-793. · Zbl 1138.91451 · doi:10.1111/j.1467-9965.2007.00327.x
[16] Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica 46 171-185. · Zbl 0411.90012
[17] Lopes, L. L. (1987). Between hope and fear: The psychology of risk. Adv. Experimental Social Psychology 20 255-295.
[18] Nishimura, K. and Ozaki, H. (2007). Irrevsible investment and Knightian uncertainty. J. Econom. Theory 136 668-694. · Zbl 1281.91061 · doi:10.1016/j.jet.2006.10.011
[19] Obłój, J. (2004). The Skorokhod embedding problem and its offspring. Probab. Surv. 1 321-390. · Zbl 1189.60088 · doi:10.1214/154957804100000060
[20] Parato, V. (1897). Cours D’Économie Politique. Lausanne and Paris.
[21] Prelec, D. (1998). The probability weighting function. Econometrica 66 497-527. · Zbl 1009.91007 · doi:10.2307/2998573
[22] Riedel, F. (2009). Optimal stopping with multiple priors. Econometrica 77 857-908. · Zbl 1181.60064 · doi:10.3982/ECTA7594
[23] Schied, A. (2004). On the Neyman-Pearson problem for law-invariant risk measures and robust utility functionals. Ann. Appl. Probab. 14 1398-1423. · Zbl 1121.91054 · doi:10.1214/105051604000000341
[24] Shiryaev, A., Xu, Z. and Zhou, X. Y. (2008). Thou shalt buy and hold. Quant. Finance 8 765-776. · Zbl 1154.91478 · doi:10.1080/14697680802563732
[25] Shiryayev, A. N. (1978). Optimal Stopping Rules . Springer, New York. · Zbl 0391.60002
[26] Skorokhod, A. V. (1961). Issledovaniya po Teorii Sluchainykh Protsessov ( Stokhas-Ticheskie Differentsialnye Uravneniya i Predelnye Teoremy dlya Protsessov Markova ). Izdat. Kiev. Univ., Kiev, Ukraine.
[27] Tversky, A. and Fox, C. R. (1995). Weighing risk and uncertainty. Psychological Rev. 102 269-283.
[28] Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertainty 5 297-323. · Zbl 0775.90106 · doi:10.1007/BF00122574
[29] Wang, S. (1995). Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insurance Math. Econom. 17 43-54. · Zbl 0837.62088 · doi:10.1016/0167-6687(95)00010-P
[30] Wang, S. S. and Young, V. R. (1998). Risk-adjusted credibility premiums using distorted probabilities. Scand. Actuar. J. 2 143-165. · Zbl 1043.91512 · doi:10.1080/03461238.1998.10413999
[31] Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica 55 95-115. · Zbl 0616.90005 · doi:10.2307/1911158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.