×

zbMATH — the first resource for mathematics

The compositional inverse of a class of bilinear permutation polynomials over finite fields of characteristic 2. (English) Zbl 1286.05005
Summary: Laigle-Chapuy constructed a class of permutation polynomials over a finite field of characteristic 2, which includes several other known classes. In this paper, we determine the compositional inverses of all Laigle-Chapuy’s permutation polynomials. Our method is based on a direct sum decomposition of the finite field.

MSC:
11T06 Polynomials over finite fields
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Akbary, A.; Alaric, S.; Wang, Q., On some classes of permutation polynomials, Int. J. Number Theory, 4, 121-133, (2008) · Zbl 1218.11108
[2] Akbary, A.; Ghioca, D.; Wang, Q., On constructing permutations of finite fields, Finite Fields Appl., 17, 51-67, (2011) · Zbl 1281.11102
[3] Akbary, A.; Wang, Q., On polynomials of the form \(x^r f(x^{(q - 1) / \ell})\), Int. J. Math. Math. Sci., (2007), Art. ID 23408, 7 pp
[4] Blokhuis, A.; Coulter, R. S.; Henderson, M.; O’Keefe, C. M., Permutations amongst the Dembowski-Ostrom polynomials, (Proceedings of the Fifth International Conference on Finite Fields and Applications, Augsburg, 1999, (2001), Springer), 37-42 · Zbl 1009.11064
[5] Charpin, P.; Kyureghyan, G., When does \(G(x) + \gamma \operatorname{Tr}(H(x))\) permutate \(\mathbb{F}_{p^n}\)?, Finite Fields Appl., 15, 615-632, (2009) · Zbl 1229.11153
[6] Coulter, R. S.; Henderson, M., The compositional inverse of a class of permutation polynomials over a finite field, Bull. Aust. Math. Soc., 65, 521-526, (2002) · Zbl 1023.11061
[7] Dempwolff, U.; Müller, P., Permutation polynomials and translation planes of even order, Adv. Geom., 13, 293-313, (2013) · Zbl 1278.51003
[8] Hou, X.-D., Two classes of permutation polynomials over finite fields, J. Combin. Theory Ser. A, 118, 448-454, (2011) · Zbl 1230.11146
[9] Laigle-Chapuy, Y., A note on a class of quadratic permutation polynomials over \(\mathbb{F}_{2^n}\), (Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., vol. 4851, (2007), Springer), 130-137 · Zbl 1195.11159
[10] Lidl, R.; Mullen, G. L., When does a polynomial over a finite field permutate the elements of the field?, Amer. Math. Monthly, 95, 243-246, (1988) · Zbl 0653.12010
[11] Lidl, R.; Mullen, G. L., When does a polynomial over a finite field permutate the elements of the field? II, Amer. Math. Monthly, 100, 71-74, (1993) · Zbl 0777.11054
[12] Lidl, R.; Niederreiter, H., Finite fields, Encyclopedia Math. Appl., vol. 20, (1997), Cambridge University Press Cambridge
[13] Muratović-Ribić, A., A note on the coefficients of inverse polynomials, Finite Fields Appl., 13, 977-980, (2007) · Zbl 1167.11044
[14] Wan, D.; Lidl, R., Permutation polynomials of the form \(x^r f(x^{(q - 1) / d})\) and their group structure, Monatsh. Math., 112, 149-163, (1991) · Zbl 0737.11040
[15] Wang, Q., Cyclotomic mapping permutation polynomials over finite fields, (Sequences, Subsequences, and Consequences, International Workshop, SSC 2007, Lecture Notes in Comput. Sci., vol. 4893, (2007), Springer-Verlag Berlin), 119-128 · Zbl 1154.11342
[16] Wang, Q., On inverse permutation polynomials, Finite Fields Appl., 15, 207-213, (2009) · Zbl 1183.11075
[17] Wu, B.; Liu, Z., Linearized polynomials over finite fields revisited, Finite Fields Appl., 22, 79-100, (2013) · Zbl 1345.11084
[18] Wu, B.; Liu, Z., The compositional inverse of a class of linearized permutation polynomials over \(\mathbb{F}_{2^n}\), n odd, preprint · Zbl 1309.11085
[19] Zha, Z.; Hu, L., Two classes of permutation polynomials over finite fields, Finite Fields Appl., 18, 781-790, (2012) · Zbl 1288.11111
[20] Zieve, M., Some families of permutation polynomials over finite fields, Int. J. Number Theory, 4, 851-857, (2008) · Zbl 1204.11180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.