×

zbMATH — the first resource for mathematics

Finite elements for symmetric tensors in three dimensions. (English) Zbl 1285.74013
Summary: We construct finite element subspaces of the space of symmetric tensors with square-integrable divergence on a three-dimensional domain. These spaces can be used to approximate the stress field in the classical Hellinger-Reissner mixed formulation of the elasticty equations, when standard discontinuous finite element spaces are used to approximate the displacement field. These finite element spaces are defined with respect to an arbitrary simplicial triangulation of the domain, and there is one for each positive value of the polynomial degree used for the displacements. For each degree, these provide a stable finite element discretization. The construction of the spaces is closely tied to discretizations of the elasticity complex and can be viewed as the three-dimensional analogue of the triangular element family for plane elasticity previously proposed by D. N. Arnold and R. Winther [Numer. Math. 92, No. 3, 401–419 (2002; Zbl 1090.74051)].

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Scot Adams and Bernardo Cockburn, A mixed finite element method for elasticity in three dimensions, J. Sci. Comput. 25 (2005), no. 3, 515 – 521. · Zbl 1125.74382
[2] M. Amara and J. M. Thomas, Equilibrium finite elements for the linear elastic problem, Numer. Math. 33 (1979), no. 4, 367 – 383. · Zbl 0401.73079
[3] Douglas N. Arnold, Differential complexes and numerical stability, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 137 – 157. · Zbl 1023.65113
[4] Douglas N. Arnold and Gerard Awanou, Rectangular mixed finite elements for elasticity, Math. Models Methods Appl. Sci. 15 (2005), no. 9, 1417 – 1429. · Zbl 1077.74044
[5] Douglas N. Arnold, Franco Brezzi, and Jim Douglas Jr., PEERS: a new mixed finite element for plane elasticity, Japan J. Appl. Math. 1 (1984), no. 2, 347 – 367. · Zbl 0633.73074
[6] Douglas N. Arnold, Jim Douglas Jr., and Chaitan P. Gupta, A family of higher order mixed finite element methods for plane elasticity, Numer. Math. 45 (1984), no. 1, 1 – 22. · Zbl 0558.73066
[7] Douglas N. Arnold and Richard S. Falk, A new mixed formulation for elasticity, Numer. Math. 53 (1988), no. 1-2, 13 – 30. · Zbl 0621.73102
[8] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp. 76 (2007), no. 260, 1699 – 1723. · Zbl 1118.74046
[9] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006), 1 – 155. · Zbl 1185.65204
[10] Douglas N. Arnold and Ragnar Winther, Mixed finite elements for elasticity, Numer. Math. 92 (2002), no. 3, 401 – 419. · Zbl 1090.74051
[11] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129 – 151 (English, with loose French summary). · Zbl 0338.90047
[12] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[13] Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 9 (1975), no. R-2, 77 – 84 (English, with Loose French summary). · Zbl 0368.65008
[14] R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), no. 3, 249 – 277 (English, with French summary). · Zbl 0467.65062
[15] Badouin M. Fraejis de Veubeke, Displacement and equilibrium models in the finite element method, Stress analysis (New York) , Wiley, 1965, pp. 145-197.
[16] C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Math. 30 (1978), no. 1, 103 – 116. · Zbl 0427.73072
[17] E. Stein and R. Rolfes, Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity, Comput. Methods Appl. Mech. Engrg. 84 (1990), no. 1, 77 – 95. · Zbl 0729.73208
[18] Rolf Stenberg, On the construction of optimal mixed finite element methods for the linear elasticity problem, Numer. Math. 48 (1986), no. 4, 447 – 462. · Zbl 0563.65072
[19] Rolf Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math. 53 (1988), no. 5, 513 – 538. · Zbl 0632.73063
[20] R. Stenberg, Two low-order mixed methods for the elasticity problem, The mathematics of finite elements and applications, VI (Uxbridge, 1987) Academic Press, London, 1988, pp. 271 – 280.
[21] V.B. Watwood Jr. and B.J. Hartz, An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems, Internat. J. Solids Structures 4 (1968), 857-873. · Zbl 0164.26201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.