×

Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants. (English) Zbl 1285.65007

In this paper, the problem of producing a trivariate piecewise quadratic \(C^1\) interpolant to positional and gradient information at the vertices of a tetrahedral partition, considered by A. J. Worsey and B. Piper [Comput. Aided Geom. Des. 5, No. 3, 177–186 (1988; Zbl 0654.65008)] is recalled. The authors consider a regular tetrahedral partition and give an algorithm to construct a normalized B-splines basis of the space of Worsey-Piper splines (these B-splines are all positive, have local support and form a partition of unity), based on a cubic programming problem. In the geometric framework, the problem is equivalent with founding a WP tetrahedron with minimal volume, containing all Bezier points which surround a vertex. The WP-B-spline representation of \(C^1\) trivariate quadratic polynomials or WP splines in terms of their polar forms is also introduced in order to construct discrete quasi-interpolants which have an optimal approximation order.

MSC:

65D07 Numerical computation using splines
41A25 Rate of convergence, degree of approximation
65D05 Numerical interpolation

Citations:

Zbl 0654.65008
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barthe, L., Mora, B., Dodgson, N., Sabin, M.A.: Triquadratic reconstruction for interactive modeling of potential fields. In: Proc. Shape Modeling International, pp. 145–153. IEEE Press, Banff (2002)
[2] Byrd, R.H., Hribar, E.M., Nocedal, J.: An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9, 877–900 (1999) · Zbl 0957.65057 · doi:10.1137/S1052623497325107
[3] Chung, K.C., Yao, T.H.: On lattices admitting unique Lagrange interpolation. SIAM J. Numer. Anal. 14, 735–743 (1977) · Zbl 0367.65003 · doi:10.1137/0714050
[4] Coleman, T.F., Li, Y.: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math. Program. 67(2), 189–224 (1994) · Zbl 0842.90106 · doi:10.1007/BF01582221
[5] Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996) · Zbl 0855.65063 · doi:10.1137/0806023
[6] de Boor, C.: The quasi-interpolant as a tool in elementary polynomial spline theory. In: Berens, H., Cheney, E.W., Lorentz, G.G., Schumaker, L.L. (eds.) Approximation Theory I, pp. 269–276. Academic Press, New York (1973) · Zbl 0317.41007
[7] de Boor, C.: Multivariate polynomial interpolation: Conjectures concerning GC-sets. Numer. Algorithms 45, 113–125 (2007) · Zbl 1123.41003 · doi:10.1007/s11075-006-9062-2
[8] Dierckx, P.: On calculating normalized Powell-Sabin B-splines. Comput. Aided Geom. Des. 15, 61–78 (1997) · Zbl 0894.68152 · doi:10.1016/S0167-8396(97)81785-2
[9] Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Classics in Applied Mathematics, vol. 4. SIAM, Philadelphia (1990) · Zbl 0713.90043
[10] Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002) · Zbl 1028.90060 · doi:10.1137/S0036144502414942
[11] Goldfarb, D.: A family of variable metric updates derived by variational means. Math. Comput. 24, 23–26 (1970) · Zbl 0196.18002 · doi:10.1090/S0025-5718-1970-0258249-6
[12] Liang, X.Z.: On the interpolation and approximation in several variables. Postgraduate Thesis, Jilin University (1965)
[13] Lyche, T., Schumaker, L.L.: Local spline approximation methods. J. Approx. Theory 15, 294–325 (1975) · Zbl 0315.41011 · doi:10.1016/0021-9045(75)90091-X
[14] Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell-Sabin partitions. Adv. Comput. Math. 26, 283–304 (2007) · Zbl 1116.65008 · doi:10.1007/s10444-006-9025-0
[15] Meissner, M., Huang, J., Bartz, D., Mueller, K., Crawfis, R.: A practical comparison of popular volume rendering algorithms. In: Symposium on Volume Visualization and Graphics, pp. 81–90. ACM Press, Salt-Lake City (2000)
[16] Mora, B., Jessel, J.P., Caubet, R.: Visualization of isosurafces with parametric cubes. Eurographics 20(3), 377–384 (2001)
[17] Nürnberger, G., Rössl, C., Seidel, H.P., Zeilfelder, F.: Quasi-interpolation by quadratic piecewise polynomials in three variables. Comput. Aided Geom. Des. 22, 221–249 (2005) · Zbl 1082.65009 · doi:10.1016/j.cagd.2004.11.002
[18] Parker, S., Shirley, P., Livnat, Y., Hansen, C., Sloan, P.P.: Interactive ray tracing for isosurface rendering. In: Proc. IEEE Visualization, pp. 233–238. ACM Press, Research Triangle Park (1998)
[19] Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximation on triangles. ACM Trans. Math. Softw. 3(4), 316–325 (1977) · Zbl 0375.41010 · doi:10.1145/355759.355761
[20] Rössl, C., Zeilfelder, F., Nürnberger, G., Seidel, H.-P.: Reconstruction of volume data with quadratic super splines. IEEE Trans. Vis. Comput. Graph. 10(4), 397–409 (2004) · Zbl 05108430 · doi:10.1109/TVCG.2004.16
[21] Rössl, C., Zeilfelder, F., Nürnberger, G., Seidel, H.-P.: Spline appoximation of general volumetric data. In: Symposium on Solid Modeling and Applications, pp. 71–82. ACM Press, Genoa (2004)
[22] Sbibih, D., Serghini, A., Tijini, A.: Polar forms and quadratic splines quasi-interpolants over Powell-Sabin triangulation. Appl. Numer. Math. 59, 938–958 (2009) · Zbl 1167.65005 · doi:10.1016/j.apnum.2008.03.040
[23] Sorokina, T., Worsey, A.J.: A multivariate Powell-Sabin interpolant. Adv. Comput. Math. 29(1), 71–89 (2008) · Zbl 1154.65009 · doi:10.1007/s10444-007-9041-8
[24] Sorokina, T., Zeilfelder, F.: Local quasi-interpolation by cubic C 1 splines on type-6 tetrahedral partitions. IMA J. Numer. Anal. 27, 74–101 (2007) · Zbl 1116.65011 · doi:10.1093/imanum/drl014
[25] Speleers, H.: A normalized basis for quintic Powell-Sabin splines. Comput. Aided Geom. Des. 27, 438–457 (2010) · Zbl 1210.65027 · doi:10.1016/j.cagd.2010.05.001
[26] Worsey, A.J., Piper, B.: A trivariate Powell-Sabin interpolant. Comput. Aided Geom. Des. 5, 177–186 (1988) · Zbl 0654.65008 · doi:10.1016/0167-8396(88)90001-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.