zbMATH — the first resource for mathematics

The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. (English) Zbl 1285.35020
Summary: We study the regularity up to the boundary of solutions to the Dirichlet problem for the fractional Laplacian. We prove that if \(u\) is a solution of \((-\Delta)^su=g\) in \(\varOmega\), \(u\equiv 0\) in \(\mathbb R^n\backslash\varOmega\), for some \(s\in (0,1)\) and \(g\in L^\infty(\varOmega)\), then \(u\) is \(C^s(\mathbb R^n)\) and \(u/\delta^s|_\varOmega\) is \(C^\alpha\) up to the boundary \(\partial\varOmega\) for some \(\alpha\in (0,1)\), where \(\delta(x)=\mathrm{dist}(x,\partial\varOmega)\). For this, we develop a fractional analog of the Krylov boundary Harnack method.
Moreover, under further regularity assumptions on \(g\) we obtain higher order Hölder estimates for \(u\) and \(u/\delta^s\). Namely, the \(C^\beta\) norms of \(u\) and \(u/\delta^s\) in the sets \(\{x\in \varOmega:\delta(x)\geqslant\rho\}\) are controlled by \(C\rho^{s-\beta}\) and \(C\rho^{\alpha-\beta}\), respectively.
These regularity results are crucial tools in our proof of the Pohozaev identity for the fractional Laplacian [X. Ros-Oton and J. Serra, C. R., Math., Acad. Sci. Paris 350, No. 9–10, 505–508 (2012; Zbl 1273.35301), “The Pohozaev identity for the fractional Laplacian” (submitted), arxiv:1207.5986]

35J40 Boundary value problems for higher-order elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI arXiv
[1] Birkner, M.; López-Mimbela, J. A.; Wakolbinger, A., Comparison results and steady states for the Fujita equation with fractional Laplacian, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 22, 83-97, (2005) · Zbl 1075.60081
[2] Bogdan, K., The boundary Harnack principle for the fractional Laplacian, Studia Math., 123, 43-80, (1997) · Zbl 0870.31009
[3] Bogdan, K.; Grzywny, T.; Ryznar, M., Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38, 1901-1923, (2010) · Zbl 1204.60074
[4] Bogdan, K.; Kulczycki, T.; Kwaśnicki, M., Estimates and structure of α-harmonic functions, Probab. Theory Related Fields, 140, 345-381, (2008) · Zbl 1146.31004
[5] Bogdan, K.; Zak, T., On Kelvin transformation, J. Theoret. Probab., 19, 89-120, (2006) · Zbl 1105.60057
[6] Caffarelli, L.; Cabré, X., Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, (1995), American Mathematical Society Providence, RI · Zbl 0834.35002
[7] Caffarelli, L.; Roquejoffre, J. M.; Sire, Y., Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12, 1151-1179, (2010) · Zbl 1221.35453
[8] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260, (2007) · Zbl 1143.26002
[9] Caffarelli, L.; Silvestre, L., Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62, 597-638, (2009) · Zbl 1170.45006
[10] Chen, Z.; Kim, P.; Song, R., Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12, 1307-1329, (2010) · Zbl 1203.60114
[11] Evans, L. C.; Gariepy, R. F., Measure theory and fine properties of functions, Studies in Advanced Mathematics, (1992), CRC Press · Zbl 0804.28001
[12] Fall, M. M.; Weth, T., Nonexistence results for a class of fractional elliptic boundary value problems
[13] Getoor, R. K., First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101, 75-90, (1961) · Zbl 0104.11203
[14] Gilbarg, D.; Trudinger, N. S., Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, vol. 224, (1977), Springer-Verlag Berlin-New York · Zbl 0361.35003
[15] Kazdan, J. L., Prescribing the curvature of a Riemannian manifold, Regional Conference Series in Mathematics, vol. 57, (1985), American Mathematical Society · Zbl 0561.53048
[16] Kim, S.; Lee, K., Geometric property of the ground state eigenfunction for Cauchy process
[17] Krylov, N., Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR, Ser. Mat., 47, 75-108, (1983)
[18] Landkof, N. S., Foundations of modern potential theory, (1972), Springer New York · Zbl 0253.31001
[19] Ros-Oton, X.; Serra, J., Fractional Laplacian: Pohozaev identity and nonexistence results, C. R. Math. Acad. Sci. Paris, 350, 505-508, (2012) · Zbl 1273.35301
[20] Ros-Oton, X.; Serra, J., The Pohozaev identity for the fractional Laplacian · Zbl 1361.35199
[21] X. Ros-Oton, J. Serra, Boundary regularity for a class of fully nonlinear integro-differential equations, in preparation. · Zbl 1351.35245
[22] Savin, O.; Valdinoci, E., Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM J. Math. Anal., 43, 2675-2687, (2011) · Zbl 1233.35201
[23] Servadei, R.; Valdinoci, E., Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389, 887-898, (2012) · Zbl 1234.35291
[24] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 67-112, (2007) · Zbl 1141.49035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.