×

zbMATH — the first resource for mathematics

Quasi-coherent states for damped and forced harmonic oscillator. (English) Zbl 1284.81162
Summary: In this study, first we construct the quasi-coherent states for a damped and forced harmonic oscillator and discuss the transition of the system from the damped oscillations to forced steady state oscillations. Second, we generalize the Caldirola-Kanai Hamiltonian into the new systems such as the frequency and the mass parameters are time dependent and discuss three examples of them.
©2013 American Institute of Physics

MSC:
81R30 Coherent states
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q41 Time-dependent Schrödinger equations and Dirac equations
81S22 Open systems, reduced dynamics, master equations, decoherence
81R12 Groups and algebras in quantum theory and relations with integrable systems
70H05 Hamilton’s equations
70J30 Free motions in linear vibration theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Colegrave, R. K.; Abdalla, M. S., Opt. Acta, 28, 495, (1981), 10.1080/713820584; Colegrave, R. K.; Abdalla, M. S., Opt. Acta, 28, 495, (1981), 10.1023/B:IJTP.0000049014.09671.e2; · Zbl 1073.81050
[2] Pedrosa, I. A.; Rosas, A.; Guedes, I., J. Phys. A, 38, 7757, (2005) · Zbl 1083.81516
[3] Nassar, A. B., Phys. Lett. A, 106, 43, (1984)
[4] Lemos, N. A.; Natividade, C. P., Nuovo Cimento B, 99, 211, (1987), 10.1007/BF02726583; Lemos, N. A.; Natividade, C. P., Nuovo Cimento B, 99, 211, (1987), 10.1142/S0217732397001138;
[5] Davies, E. B., Quantum Theory of Open Systems, (1976), Academic Press: Academic Press, London; Davies, E. B., Quantum Theory of Open Systems, (1976), Academic Press: Academic Press, London; Davies, E. B., Quantum Theory of Open Systems, (1976), Academic Press: Academic Press, London; · Zbl 0388.46044
[6] Bateman, H., Phys. Rev., 38, 815, (1931) · Zbl 0003.01101
[7] Caldirola, P., Nuovo Cimento, 18, 393, (1941)
[8] Kanai, E., Prog. Theor. Phys., 3, 440, (1948)
[9] Chruscinski, D., Ann. Phys., 321, 840, (2006) · Zbl 1088.81038
[10] Chruscinski, D.; Jurkowski, J., Ann. Phys., 321, 854, (2006) · Zbl 1087.81016
[11] Baldiotti, M. C.; Fresneda, R.; Gitman, D. M., Phys. Lett. A., 375, 1630, (2011) · Zbl 1242.81102
[12] Feynman, R. P., (1942); Feynman, R. P., (1942), 10.1103/RevModPhys.20.367; Feynman, R. P., (1942), 10.1103/RevModPhys.20.367; · Zbl 1371.81126
[13] Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals, (1965), Mc Graw-Hill: Mc Graw-Hill, New York · Zbl 0176.54902
[14] Dodonov, V. V.; Manko, V. I., Phys. Rev. A, 20, 550, (1979)
[15] Abdalla, M. S., Phys. Rev. A, 34, 4598, (1986)
[16] Um, C.; Yeon, K.; George, T. F., Phys. Rep., 362, 63-192, (2002) · Zbl 0991.81056
[17] Lewis, H. R.; Riesenfeld, W. B., J. Math. Phys., 10, 1458, (1969)
[18] Hasse, R. W., J. Math. Phys., 16, 2005, (1975)
[19] Remaud, B., J. Phys. A, 13, 2013, (1980)
[20] Abdalla, M. S., Phys. Rev. A, 33, 2870, (1986)
[21] Yeon, K. H.; Um, C. I.; George, T. F., Phys. Rev. A, 36, 5287, (1987)
[22] Sun, C. P.; Yu, L. H., Phys. Rev. A, 51, 1845, (1995)
[23] Pedrosa, I. A., Phys. Rev. A, 55, 3219, (1997)
[24] Pedrosa, I. A.; Serra, G. P.; Guedes, I., Phys. Rev. A, 56, 4300, (1997)
[25] Maamache, M., J. Math. Phys., 39, 161, (1998) · Zbl 0908.35110
[26] Zukov, A. V., Phys. Lett. A, 256, 325, (1999)
[27] Yeon, K. H.; Um, C. I.; George, T. F., Phys. Rev. A, 68, 052108, (2003)
[28] Choi, J. R., Int. J. Mod. Phys. B, 18, 1007, (2004)
[29] de Lima, A. L.; Rosas, A.; Pedrosa, I. A., Ann. Phys., 323, 2253, (2008) · Zbl 1146.81023
[30] Brittin, W. E., Phys. Rev., 77, 396, (1950) · Zbl 0036.14304
[31] Unal, N., J. Math. Phys., 53, 012102, (2012) · Zbl 1273.81086
[32] Ozeren, S. F., J. Math. Phys., 51, 122901, (2010) · Zbl 1314.81103
[33] Bessaa, V.; Guedes, I., J. Math. Phys., 52, 062106, (2011) · Zbl 1317.81094
[34] Jackson, J. D., Classical Electrodynamics, (1999), John Wiley and Sons Inc.: John Wiley and Sons Inc., New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.