×

zbMATH — the first resource for mathematics

A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements. (English) Zbl 1284.76255
Summary: This article describes a conservative synchronized remap algorithm applicable to arbitrary Lagrangian–Eulerian computations with nodal finite elements. In the proposed approach, ideas derived from flux-corrected transport (FCT) methods are extended to conservative remap. Unique to the proposed method is the direct incorporation of the geometric conservation law (GCL) in the resulting numerical scheme. It is shown here that the geometric conservation law allows the method to inherit the positivity preserving and local extrema diminishing (LED) properties typical of FCT schemes. The proposed framework is extended to the systems of equations that typically arise in meteorological and compressible flow computations. The proposed algorithm remaps the vector fields associated with these problems by means of a synchronized strategy. The present paper also complements and extends the work of the second author on nodal-based methods for shock hydrodynamics, delivering a fully integrated suite of Lagrangian/remap algorithms for computations of compressible materials under extreme load conditions. Extensive testing in one, two, and three dimensions shows that the method is robust and accurate under typical computational scenarios.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
Software:
SHASTA; REMAP3D; ReALE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aziz, A.K.; Monk, P., Continuous finite elements in space and time for the heat equation, Mathematics of computation, 144, 70-97, (1998)
[2] Barlow, A., A compatible finite element multi-material ALE hydrodynamics algorithm, International journal for numerical methods in fluids, 56, 953-964, (2008) · Zbl 1169.76030
[3] Benson, D.J., An efficient, accurate, simple ALE method for nonlinear finite element programs, Computer methods in applied mechanics and engineering, 72, 305-350, (1989) · Zbl 0675.73037
[4] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Computer methods in applied mechanics and engineering, 99, 235-394, (1992) · Zbl 0763.73052
[5] Benson, D.J., Momentum advection on a staggered grid, Journal of computational physics, 100, 143-162, (1992) · Zbl 0758.76038
[6] A. Bonito, I. Kyza, R.H. Nochetto, A priori error analysis of time discrete higher-order ALE formulations. In preparation, April, 2011. · Zbl 1278.65137
[7] Boris, J.P.; Book, D.L., Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, Journal of computational physics, 11, 38-69, (1973) · Zbl 0251.76004
[8] Boris, J.P.; Book, D.L., Flux-corrected transport. II. generalization of the method, Journal of computational physics, 18, 248-283, (1975) · Zbl 0306.76004
[9] Boris, J.P.; Book, D.L., Flux-corrected transport. III. minimal error FCT algorithmsl, Journal of computational physics, 20, 397-431, (1976) · Zbl 0325.76037
[10] Donea, J.; Giuliani, S.; Halleux, J.P., An arbitrary lagrangian – eulerian finite element method for transient dynamic fluid-structure interactions, Computer methods in applied mechanics and engineering, 33, 689-723, (1982) · Zbl 0508.73063
[11] Dukowicz, J.K.; Baumgardner, J., Incremental remapping as a transportation/advection algorithm, Journal of computational physics, 160, 318-335, (2000) · Zbl 0972.76079
[12] Dukowicz, J.K.; Kodis, J.W., Accurate conservative remapping (rezoning) for arbitrary lagrangian – eulerian computations, SIAM journal on scientific and statistical computing, 8, 305-321, (1987) · Zbl 0644.76085
[13] J.K. Dukowicz, N. Padial, REMAP3D: A conservative three-dimensional remapping code. Technical report, LA-12136-MS Report, Los Alamos National Laboratory, Los Alamos, NM, USA, 1991.
[14] Fix, G.J., Phase field models for free boundary problems, () · Zbl 0505.65061
[15] Fletcher, C.A.J., The group finite element formulation, Computer methods in applied mechanics and engineering, 37, 225-244, (1983) · Zbl 0551.76012
[16] Formaggia, L.; Nobile, F., A stability analysis for the arbitrary lagrangian – eulerian formulation with finite elements, East – west journal on numerical mathematics, 7, 2, 105-131, (1999) · Zbl 0942.65113
[17] Formaggia, L.; Nobile, F., Stability analysis of second-order time accurate schemes for ALE-FEM, Computer methods in applied mechanics and engineering, 193, 4097-4116, (2004) · Zbl 1175.76091
[18] Forster, C.; Wall, W.A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Computer methods in applied mechanics and engineering, 196, 1278-1293, (2007) · Zbl 1173.74418
[19] Fressmann, D.; Wriggers, P., Advection approaches for single- and multi-material arbitrary lagrangian – eulerian finite element procedures, Computational mechanics, 225, 153-190, (2007) · Zbl 1168.74451
[20] Galera, S.; Maire, P.-H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, Journal of computational physics, 229, 5755-5787, (2010) · Zbl 1346.76105
[21] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary lagrangian – eulerian computing method for all flow speeds, Journal of computational physics, 14, 227-253, (1974) · Zbl 0292.76018
[22] Hulme, B.L., Discrete Galerkin and related one-step methods for ordinary differential equations, Mathematics of computation, 26, 120, 881-891, (1972) · Zbl 0272.65056
[23] Jameson, A., Computational algorithms for aerodynamic analysis and design, Applied numerical mathematics, 13, 743-776, (1993)
[24] Jameson, A., Analysis and design of numerical schemes for gas dynamics 1. articial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence, International journal of CFD, 4, 171-218, (1995)
[25] Jameson, A., Computational algorithms for aerodynamic analysis and design, International journal for numerical methods in fluids, 20, 743-776, (1995) · Zbl 0837.76055
[26] Jamet, P., Stability and convergence of a generalized crank – nicolson scheme on a variable mesh for the heat equation, SIAM journal on numerical analysis, 17, 530-539, (1980) · Zbl 0454.65073
[27] Knupp, P.; Margolin, L.G.; Shashkov, M.J., Reference Jacobian optimization-based rezone strategies for arbitrary lagrangian – eulerian methods, Journal of computational physics, 176, 93-128, (2002) · Zbl 1120.76340
[28] Kucharik, M.; Breil, J.; Maire, P.-H.; Berndt, M.; Shashkov, M.J., Hybrid remap for multi-material ALE, Computers and fluids, (2010) · Zbl 1433.76133
[29] Kucharik, M.; Shaskov, M.; Wendroff, B., An efficient linearity-and-bound-preserving remapping method, Journal of computational physics, 188, 462-471, (2003) · Zbl 1022.65009
[30] Kuzmin, D., Explicit and implicit FEM-fct algorithms with flux linearization, Journal of computational physics, 228, 2517-2534, (2009) · Zbl 1275.76171
[31] ()
[32] Kuzmin, D.; Möller, M.; Shadid, J.N.; Shashkov, M.J., Failsafe flux limiting and constrained data projections for systems of conservation laws, Journal of computational physics, 229, 8766-8779, (2010) · Zbl 1282.76161
[33] Kuzmin, D.; Möller, M.; Turek, S., High-resolution FEM-fct schemes for multidimensional conservation laws, Computer methods in applied mechanics and engineering, 193, 4915-4946, (2003) · Zbl 1112.76393
[34] Kuzmin, D.; Möller, M.; Turek, S., Multidimensional FEM-fct schemes for arbitrary time-stepping, International journal for numerical methods in fluids, 42, 265-295, (2003) · Zbl 1055.76029
[35] Kuzmin, D.; Turek, S., Flux correction tools for finite elements, Journal of computational physics, 175, 525-538, (2002) · Zbl 1028.76023
[36] Langer, J.S., Models of pattern formation in first-order phase transitions, () · Zbl 0132.23402
[37] Lesoinne, M.; Farhat, C., Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Computer methods in applied mechanics and engineering, 134, 71-90, (1996) · Zbl 0896.76044
[38] Liska, R.; Shashkov, M.J.; Vàchal, P.; Wendroff, B., Optimization-based synchronized flux-corrected conservative interpolation (remapping) of mass and momentum for arbitrary lagrangian – eulerian methods, Journal of computational physics, 229, 1467-1497, (2010) · Zbl 1329.76269
[39] Löhner, R.; Morgan, K.; Peraire, J.; Vahdati, M., Finite element flux-corrected transport (FEM-FCT) for the Euler and navier – stokes equations, International journal for numerical methods in fluids, 7, 1093-1109, (1987) · Zbl 0633.76070
[40] Löhner, R.; Morgan, K.; Vahdati, M.; Boris, J.P.; Book, D.L., FEM-FCT: combining unstructured grids with high resolution, Communications in applied numerical methods, 4, 717-729, (1988) · Zbl 0659.65085
[41] Löhner, R.; Morgan, K.; Zienkiwicz, O.C., The solution of non-linear hyperbolic equation systems by the finite element method, International journal for numerical methods in fluids, 4, 1043-1063, (1984) · Zbl 0551.76002
[42] Loubère, R.; Maire, P.-H.; Shashkov, M.J., Reale: a reconnection arbitrary lagrangian – eulerian method in cylindrical coordinates, Computers and fluids, (2010)
[43] Loubère, R.; Maire, P.-H.; Shashkov, M.J.; Breil, J.; Galera, S., Reale: a reconnection-based arbitrary lagrangian – eulerian method, Journal of computational physics, 229, 4724-4761, (2010) · Zbl 1305.76067
[44] Loubère, R.; Shashkov, M.J., A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian Eulerian methods, Journal of computational physics, 209, 105-138, (2005) · Zbl 1329.76236
[45] Love, E.; Scovazzi, G., On the angular momentum conservation and incremental objectivity properties of a predictor/multi-corrector method for Lagrangian shock hydrodynamics, Computer methods in applied mechanics and engineering, 198, 3207-3213, (2009) · Zbl 1230.76036
[46] Luttwak, G.; Falcovitz, J., Slope limiting for vectors: a novel vector limiting algorithm, International journal for numerical methods in fluids, (2010) · Zbl 1453.76100
[47] Maire, P.-H., A high-order one-step, sub-cell, force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Computers and fluids, (2010)
[48] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM journal on scientific computing, 29, 1781-1824, (2007) · Zbl 1251.76028
[49] Maire, P.-H.; Breil, J., A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, International journal for numerical methods in fluids, 56, 1417-1423, (2008) · Zbl 1151.76021
[50] Maire, P.-H.; Breil, J.; Galera, S., A cell-centered arbitrary lagrangian – eulerian (ALE) method, International journal for numerical methods in fluids, 56, 1161-1166, (2008) · Zbl 1384.76044
[51] Margolin, L.G.; Shashkov, M., Second-order sign-preserving conservative interpolation (remapping) on general grids, Journal of computational physics, 184, 1, 266-298, (2003) · Zbl 1016.65004
[52] Margolin, L.G.; Shashkov, M., Remapping, recovery and repair on a staggered grid, Computer methods in applied mechanics and engineering, 193, 39-41, 4139-4155, (2004) · Zbl 1068.76058
[53] Masud, A.; Hughes, T.J.R., A space-time Galerkin/least-squares finite element formulation of the navier – stokes equations for moving domain problems, Computer methods in applied mechanics and engineering, 146, 91-126, (1997) · Zbl 0899.76259
[54] Scovazzi, G., A discourse on Galilean invariance and SUPG-type stabilization, Computer methods in applied mechanics and engineering, 196, 1108-1132, (2007) · Zbl 1120.76333
[55] Scovazzi, G., Galilean invariance and stabilized methods for compressible flows, International journal for numerical methods in fluids, 54, 757-778, (2007) · Zbl 1207.76094
[56] Scovazzi, G., Stabilized shock hydrodynamics: II. design and physical interpretation of the SUPG operator for Lagrangian computations, Computer methods in applied mechanics and engineering, 196, 66-978, (2007) · Zbl 1120.76332
[57] Scovazzi, G.; Christon, M.A.; Hughes, T.J.R.; Shadid, J.N., Stabilized shock hydrodynamics: I.A Lagrangian method, Computer methods in applied mechanics and engineering, 196, 923-966, (2007) · Zbl 1120.76334
[58] G. Scovazzi, T.J.R. Hughes, Lecture notes on continuum mechanics on arbitrary moving domains, Technical report SAND-2007-6312P, Sandia National Laboratories, November 2007.
[59] Scovazzi, G.; Love, E., A generalized view on Galilean invariance in stabilized compressible flow computations, International journal for numerical methods in fluids, 64, 1065-1083, (2010) · Zbl 1427.76235
[60] Scovazzi, G.; Shadid, J.N.; Love, E.; Rider, W.J., A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics, Computer methods in applied mechanics and engineering, 199, 3059-3100, (2010) · Zbl 1225.76204
[61] Sedov, L.I., Similarity and dimensional methods in mechanics, (1959), Academic Press New York · Zbl 0121.18504
[62] Shashkov, M.; Wendroff, B., The repair paradigm and application to conservation laws, Journal of computational physics, 198, 265-277, (2004) · Zbl 1107.65341
[63] Shashkov, M.J.; Lipnikov, K., The error-minimization-based rezone strategy for arbitrary lagrangian – eulerian methods, Communications in computational physics, 1, 53-81, (2005)
[64] Smolarkiewicz, P.; Margolin, L.G., MPDATA: a finite-difference solver for geophysicalows, Journal of computational physics, 140, 459-480, (1998) · Zbl 0935.76064
[65] Vàchal, P.; Garimella, R.V.; Shashkov, M.J., Untangling of 2D meshes in ALE simulations, Journal of computational physics, 196, 627-644, (2004) · Zbl 1109.76332
[66] Vàchal, P.; Liska, R., Sequential flux-corrected remapping for ALE methods, (), 671-679 · Zbl 1388.76215
[67] Zalesak, S.T., Fully multidimensional flux-corrected transport algorithms for fluids, Journal of computational physics, 31, 335-362, (1979) · Zbl 0416.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.