×

zbMATH — the first resource for mathematics

Reynolds- and Mach-number effects in canonical shock-turbulence interaction. (English) Zbl 1284.76241
Summary: The interaction between isotropic turbulence and a normal shock wave is investigated through a series of direct numerical simulations at different Reynolds numbers and mean and turbulent Mach numbers. The computed data are compared to experiments and linear theory, showing that the amplification of turbulence kinetic energy across a shock wave is described well using linearized dynamics. The post-shock anisotropy of the turbulence, however, is qualitatively different from that predicted by linear analysis. The jumps in mean density and pressure are lower than the non-turbulent Rankine-Hugoniot results by a factor of the square of the turbulence intensity. It is shown that the dissipative scales of turbulence return to isotropy within about 10 convected Kolmogorov time scales, a distance that becomes very small at high Reynolds numbers. Special attention is paid to the ’broken shock’ regime of intense turbulence, where the shock can be locally replaced by smooth compressions. Grid convergence of the probability density function of the shock jumps proves that this effect is physical, and not an artefact of the numerical scheme.

MSC:
76L05 Shock waves and blast waves in fluid mechanics
76F50 Compressibility effects in turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112097004576 · Zbl 0899.76193 · doi:10.1017/S0022112097004576
[2] DOI: 10.1006/jcph.2002.7021 · Zbl 1045.76029 · doi:10.1006/jcph.2002.7021
[3] DOI: 10.1017/S0022112097005107 · Zbl 0899.76194 · doi:10.1017/S0022112097005107
[4] DOI: 10.1103/PhysRevE.79.066315 · doi:10.1103/PhysRevE.79.066315
[5] DOI: 10.1017/S0022112094000704 · doi:10.1017/S0022112094000704
[6] DOI: 10.1017/S0022112093003519 · doi:10.1017/S0022112093003519
[7] DOI: 10.1063/1.3275856 · Zbl 1183.76296 · doi:10.1063/1.3275856
[8] DOI: 10.1063/1.858767 · Zbl 0799.76029 · doi:10.1063/1.858767
[9] DOI: 10.1016/j.jcp.2007.11.025 · Zbl 1135.65369 · doi:10.1016/j.jcp.2007.11.025
[10] DOI: 10.1017/S0022112088002800 · doi:10.1017/S0022112088002800
[11] DOI: 10.2514/1.J050004 · doi:10.2514/1.J050004
[12] DOI: 10.1007/BF00849117 · Zbl 0853.76047 · doi:10.1007/BF00849117
[13] DOI: 10.1016/j.jcp.2008.10.027 · Zbl 1330.76059 · doi:10.1016/j.jcp.2008.10.027
[14] J. Aeronaut. Sci. 20 pp 657– (1953) · doi:10.2514/8.2793
[15] Exp. Fluids 8 pp 241– (1990)
[16] DOI: 10.1006/jcph.2000.6492 · Zbl 0972.76066 · doi:10.1006/jcph.2000.6492
[17] DOI: 10.1016/j.jcp.2009.10.028 · Zbl 1329.76138 · doi:10.1016/j.jcp.2009.10.028
[18] DOI: 10.1063/1.4772064 · Zbl 06429869 · doi:10.1063/1.4772064
[19] DOI: 10.1023/A:1021197225166 · Zbl 1051.76576 · doi:10.1023/A:1021197225166
[20] DOI: 10.1063/1.3676449 · Zbl 06423562 · doi:10.1063/1.3676449
[21] DOI: 10.2514/3.13175 · doi:10.2514/3.13175
[22] DOI: 10.1017/S0022112004002514 · Zbl 1060.76500 · doi:10.1017/S0022112004002514
[23] Turbulence Modelling for CFD (2000)
[24] DOI: 10.1063/1.1588306 · Zbl 1186.76484 · doi:10.1063/1.1588306
[25] DOI: 10.1017/jfm.2012.265 · Zbl 1275.76158 · doi:10.1017/jfm.2012.265
[26] C. R. Méc. 333 pp 87– (2005) · Zbl 1223.76034 · doi:10.1016/j.crme.2004.09.017
[27] DOI: 10.1063/1.858343 · Zbl 0762.76050 · doi:10.1063/1.858343
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.