×

zbMATH — the first resource for mathematics

Structural organization of large and very large scales in turbulent pipe flow simulation. (English) Zbl 1284.76218
Summary: The physical structures of velocity are examined from a recent direct numerical simulation of fully developed incompressible turbulent pipe flow [X. Wu, J. R. Baltzer and R. J. Adrian, J. Fluid Mech. 698, 235–281 (2012; Zbl 1250.76116)] at a Reynolds number of \(Re_D =\)24 580 (based on bulk velocity) and a Kármán number of \(R^+ = 685\). In that work, the periodic domain length of 30 pipe radii \(R\) was found to be sufficient to examine long motions of negative streamwise velocity fluctuation that are commonly observed in wall-bounded turbulent flows and correspond to the large fractions of energy present at very long streamwise wavelengths \((\geq 3R)\). In this paper we study how long motions are composed of smaller motions. We characterize the spatial arrangements of very large-scale motions (VLSMs) extending through the logarithmic layer and above, and we find that they possess dominant helix angles (azimuthal inclinations relative to streamwise) that are revealed by two- and three-dimensional two-point spatial correlations of velocity. The correlations also reveal that the shorter, large-scale motions (LSMs) that concatenate to comprise the VLSMs are themselves more streamwise aligned. We show that the largest VLSMs possess a form similar to roll cells centred above the logarithmic layer and that they appear to play an important role in organizing the flow, while themselves contributing only a minor fraction of the flow turbulent kinetic energy. The roll cell motions play an important role with the smaller scales of motion that are necessary to create the strong streamwise streaks of low-velocity fluctuation that characterize the flow.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112008003492 · Zbl 1175.76003 · doi:10.1017/S0022112008003492
[2] DOI: 10.1017/S0022112088001818 · Zbl 0643.76066 · doi:10.1017/S0022112088001818
[3] DOI: 10.1017/S0022112008003352 · Zbl 1155.76031 · doi:10.1017/S0022112008003352
[4] DOI: 10.1017/S0022112006000814 · Zbl 1157.76346 · doi:10.1017/S0022112006000814
[5] J. Fluid Mech. 512 pp 47– (2004)
[6] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[7] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[8] DOI: 10.1017/S002211200400237X · Zbl 1065.76553 · doi:10.1017/S002211200400237X
[9] DOI: 10.1017/S0022112083000634 · doi:10.1017/S0022112083000634
[10] J. Fluid Mech. 453 pp 57– (2002)
[11] J. Fluid Mech. 478 pp 35– (2003)
[12] DOI: 10.1017/S0022112006009244 · Zbl 1093.76510 · doi:10.1017/S0022112006009244
[13] DOI: 10.1017/S0022112082001311 · Zbl 0517.76057 · doi:10.1017/S0022112082001311
[14] DOI: 10.1017/jfm.2012.300 · Zbl 1275.76125 · doi:10.1017/jfm.2012.300
[15] DOI: 10.1063/1.868317 · Zbl 0827.76035 · doi:10.1063/1.868317
[16] DOI: 10.1017/S0022112009992047 · Zbl 1189.76023 · doi:10.1017/S0022112009992047
[17] J. Fluid Mech. 589 pp 147– (2007)
[18] DOI: 10.1017/S002211209400131X · doi:10.1017/S002211209400131X
[19] DOI: 10.1007/s10494-007-9082-6 · Zbl 1201.76092 · doi:10.1007/s10494-007-9082-6
[20] DOI: 10.1146/annurev.fluid.39.050905.110308 · doi:10.1146/annurev.fluid.39.050905.110308
[21] Meyer, Transition and Turbulence pp 215– (1981)
[22] DOI: 10.1017/S0022112009991029 · Zbl 1183.76761 · doi:10.1017/S0022112009991029
[23] DOI: 10.1017/S0022112010002995 · Zbl 1205.76146 · doi:10.1017/S0022112010002995
[24] Yaglom, Atmospheric Turbulence and Radio Wave Propagation pp 166– (1967)
[25] DOI: 10.1017/S0022112006000607 · Zbl 1095.76021 · doi:10.1017/S0022112006000607
[26] DOI: 10.1017/S0022112001003512 · Zbl 1008.76029 · doi:10.1017/S0022112001003512
[27] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[28] DOI: 10.1063/1.3489528 · Zbl 06421190 · doi:10.1063/1.3489528
[29] DOI: 10.1017/S002211201000621X · Zbl 1225.76162 · doi:10.1017/S002211201000621X
[30] DOI: 10.1007/BF03182598 · doi:10.1007/BF03182598
[31] DOI: 10.1063/1.3540663 · Zbl 06421602 · doi:10.1063/1.3540663
[32] Kline, Near Wall Turbulence pp 218– (1989)
[33] DOI: 10.1063/1.2717527 · Zbl 1146.76307 · doi:10.1063/1.2717527
[34] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[35] Bonnet, Eddy Structure Identification pp 145– (1996) · doi:10.1007/978-3-7091-2676-9
[36] DOI: 10.1098/rsta.2006.1940 · Zbl 1152.76369 · doi:10.1098/rsta.2006.1940
[37] DOI: 10.1017/S0022112071002490 · doi:10.1017/S0022112071002490
[38] DOI: 10.1007/BF00271661 · Zbl 0800.76198 · doi:10.1007/BF00271661
[39] DOI: 10.1017/S002211209100188X · Zbl 0717.76057 · doi:10.1017/S002211209100188X
[40] DOI: 10.1017/S0022112009993983 · Zbl 1189.76013 · doi:10.1017/S0022112009993983
[41] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025 · doi:10.1017/S0022112099005066
[42] J. Fluid Mech. 332 pp 185– (1997) · Zbl 0892.76036 · doi:10.1017/S0022112096003965
[43] DOI: 10.1017/S0022112010006245 · Zbl 1225.76161 · doi:10.1017/S0022112010006245
[44] DOI: 10.1098/rsta.2006.1942 · Zbl 1152.76421 · doi:10.1098/rsta.2006.1942
[45] DOI: 10.1017/S002211209900467X · Zbl 0946.76030 · doi:10.1017/S002211209900467X
[46] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[47] J. Fluid Mech. 608 pp 81– (2008)
[48] DOI: 10.1017/S0022112005005872 · Zbl 1119.76304 · doi:10.1017/S0022112005005872
[49] DOI: 10.1017/S002211200600259X · Zbl 1104.76025 · doi:10.1017/S002211200600259X
[50] DOI: 10.1126/science.1100393 · doi:10.1126/science.1100393
[51] DOI: 10.1017/jfm.2012.81 · Zbl 1250.76116 · doi:10.1017/jfm.2012.81
[52] DOI: 10.1063/1.3533016 · Zbl 06421555 · doi:10.1063/1.3533016
[53] J. Fluid Mech. 592 pp 263– (2007)
[54] Panton, Self-Sustaining Mechanisms of Wall Turbulence pp 83– (1997) · Zbl 1008.76507
[55] The Structure of Turbulent Shear Flow (1976)
[56] DOI: 10.1017/S0022112006000292 · Zbl 1122.76305 · doi:10.1017/S0022112006000292
[57] DOI: 10.1017/S002211201000176X · Zbl 1205.76138 · doi:10.1017/S002211201000176X
[58] DOI: 10.1016/j.compfluid.2010.06.007 · Zbl 1245.76101 · doi:10.1016/j.compfluid.2010.06.007
[59] DOI: 10.1063/1.3267726 · Zbl 1183.76346 · doi:10.1063/1.3267726
[60] DOI: 10.1017/S0022112009006946 · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[61] DOI: 10.1080/14685240600806256 · doi:10.1080/14685240600806256
[62] DOI: 10.1007/s10494-007-9116-0 · Zbl 1391.76178 · doi:10.1007/s10494-007-9116-0
[63] DOI: 10.1017/S0022112010006336 · Zbl 1225.76034 · doi:10.1017/S0022112010006336
[64] Davidson, Ten Chapters in Turbulence (2013) · Zbl 1261.76003
[65] DOI: 10.1063/1.1343480 · Zbl 1184.76351 · doi:10.1063/1.1343480
[66] DOI: 10.1098/rsta.2008.0241 · Zbl 1221.76057 · doi:10.1098/rsta.2008.0241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.