×

zbMATH — the first resource for mathematics

On the logarithmic region in wall turbulence. (English) Zbl 1284.76206
Summary: Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally \(2\times 1{0}^{4} < {{Re}}_{\tau} < 6\times 1{0}^{5}\) for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of A. A. Townsend [The structure of turbulent shear flow. 2nd ed. Cambridge Monographs on Mechanics and Applied Mathematics. London etc.: Cambridge University Press. XI (1976; Zbl 0325.76063)], where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall.

MSC:
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112009007721 · Zbl 1183.76025 · doi:10.1017/S0022112009007721
[2] DOI: 10.1017/S0022112095003363 · doi:10.1017/S0022112095003363
[3] Phys. Fluids 22 (2010)
[4] DOI: 10.1103/PhysRevLett.108.094501 · doi:10.1103/PhysRevLett.108.094501
[5] DOI: 10.1063/1.1589014 · Zbl 1186.76353 · doi:10.1063/1.1589014
[6] DOI: 10.1017/jfm.2012.307 · Zbl 1275.76126 · doi:10.1017/jfm.2012.307
[7] DOI: 10.1007/s10494-007-9116-0 · Zbl 1391.76178 · doi:10.1007/s10494-007-9116-0
[8] DOI: 10.1063/1.3013635 · Zbl 1182.76237 · doi:10.1063/1.3013635
[9] DOI: 10.1017/S0022112005007780 · doi:10.1017/S0022112005007780
[10] DOI: 10.1017/S0022112098002419 · Zbl 0941.76510 · doi:10.1017/S0022112098002419
[11] DOI: 10.1016/j.expthermflusci.2012.02.009 · doi:10.1016/j.expthermflusci.2012.02.009
[12] Meas. Sci. Tech. 21 (2010)
[13] DOI: 10.1017/S002211200999084X · Zbl 1183.76766 · doi:10.1017/S002211200999084X
[14] DOI: 10.1017/S0022112004001958 · Zbl 1065.76106 · doi:10.1017/S0022112004001958
[15] DOI: 10.1017/S0022112010003447 · Zbl 1205.76005 · doi:10.1017/S0022112010003447
[16] Trans. ASME J. Fluids Engng 132 (2010)
[17] DOI: 10.1007/s00348-011-1165-4 · doi:10.1007/s00348-011-1165-4
[18] DOI: 10.1017/S0022112006000164 · Zbl 1151.76306 · doi:10.1017/S0022112006000164
[19] Gött. Nachr. pp 58– (1930)
[20] The Structure of Turbulent Shear Flow Vol. 2 (1976)
[21] J. Fluid Mech. 611 pp 215– (2008)
[22] A First Course in Turbulence (1972)
[23] DOI: 10.1146/annurev-fluid-120710-101039 · Zbl 1388.76089 · doi:10.1146/annurev-fluid-120710-101039
[24] Panton, Self-Sustaining Mechanisms of Wall Turbulence pp 253– (1997) · Zbl 1008.76507
[25] DOI: 10.1017/jfm.2011.19 · Zbl 1241.76288 · doi:10.1017/jfm.2011.19
[26] DOI: 10.1146/annurev-fluid-122109-160753 · Zbl 1299.76002 · doi:10.1146/annurev-fluid-122109-160753
[27] DOI: 10.1016/0376-0421(62)90014-3 · doi:10.1016/0376-0421(62)90014-3
[28] Z. Angew. Math. Mech. 5 pp 136– (1925)
[29] DOI: 10.1017/S0022112095003351 · Zbl 0849.76030 · doi:10.1017/S0022112095003351
[30] DOI: 10.1017/S0022112090001057 · doi:10.1017/S0022112090001057
[31] DOI: 10.1017/S002211208600304X · Zbl 0597.76052 · doi:10.1017/S002211208600304X
[32] DOI: 10.1017/S0022112082001311 · Zbl 0517.76057 · doi:10.1017/S0022112082001311
[33] DOI: 10.1017/S0022112077000457 · doi:10.1017/S0022112077000457
[34] DOI: 10.1103/PhysRevLett.95.074501 · doi:10.1103/PhysRevLett.95.074501
[35] DOI: 10.1098/rsta.2006.1948 · Zbl 1152.76412 · doi:10.1098/rsta.2006.1948
[36] DOI: 10.1063/1.3006423 · Zbl 1182.76550 · doi:10.1063/1.3006423
[37] DOI: 10.1063/1.2972935 · Zbl 1182.76530 · doi:10.1063/1.2972935
[38] DOI: 10.1063/1.2780196 · Zbl 1182.76529 · doi:10.1063/1.2780196
[39] Proceedings of the Fifth International Congress for Applied Mechanics, Harvard and MIT, 12–26 September (1938)
[40] DOI: 10.1017/S0022112003007304 · Zbl 1067.76513 · doi:10.1017/S0022112003007304
[41] DOI: 10.1098/rsta.2006.1946 · Zbl 1152.76410 · doi:10.1098/rsta.2006.1946
[42] Phys. Fluids 12 pp 3718– (1997)
[43] DOI: 10.1007/s10546-012-9735-4 · doi:10.1007/s10546-012-9735-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.