×

zbMATH — the first resource for mathematics

Falling styles of disks. (English) Zbl 1284.76130
Summary: We numerically investigate the dynamics of thin disks falling under gravity in a viscous fluid medium at rest at infinity. Varying independently the density and thickness of the disk reveals the influence of the disk aspect ratio which, contrary to previous belief, is found to be highly significant as it may completely change the route to non-vertical paths as well as the boundaries between the various path regimes. The transition from the straight vertical path to the planar fluttering regime is found to exhibit complex dynamics: a bistable behaviour of the system is detected within some parameter range and several intermediate regimes are observed in which, although the wake is unstable, the path barely deviates from vertical. By varying independently the body-to-fluid inertia ratio and the relative magnitude of inertial and viscous effects over a significant range, we set up a comprehensive map of the corresponding styles of path followed by an infinitely thin disk. We observe the four types of planar regimes already reported in experiments but also identify two additional fully three-dimensional regimes in which the body experiences a slow horizontal precession superimposed onto zigzagging or tumbling motions.

MSC:
76D99 Incompressible viscous fluids
70E99 Dynamics of a rigid body and of multibody systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Phys. Rev. Lett. 88 pp 14502– (2002)
[2] DOI: 10.1017/S0022112006002266 · Zbl 1165.76325 · doi:10.1017/S0022112006002266
[3] DOI: 10.1017/S0022112064000015 · Zbl 0118.20501 · doi:10.1017/S0022112064000015
[4] DOI: 10.1063/1.3541844 · Zbl 06421554 · doi:10.1063/1.3541844
[5] DOI: 10.1063/1.869919 · Zbl 1147.76451 · doi:10.1063/1.869919
[6] DOI: 10.1017/S0022112095000280 · Zbl 0848.76063 · doi:10.1017/S0022112095000280
[7] Phys. Fluids A5 pp 765– (1993)
[8] DOI: 10.1016/j.jfluidstructs.2011.03.013 · doi:10.1016/j.jfluidstructs.2011.03.013
[9] Hydrodynamics (1932) · JFM 58.1298.05
[10] DOI: 10.1146/annurev-fluid-120710-101250 · Zbl 1355.76019 · doi:10.1146/annurev-fluid-120710-101250
[11] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[12] DOI: 10.1038/40817 · doi:10.1038/40817
[13] DOI: 10.1063/1.868515 · Zbl 1027.76519 · doi:10.1063/1.868515
[14] J. Fluid Mech. 606 pp 209– (2007)
[15] DOI: 10.1063/1.2061609 · Zbl 1187.76152 · doi:10.1063/1.2061609
[16] DOI: 10.1017/jfm.2012.231 · Zbl 1275.76064 · doi:10.1017/jfm.2012.231
[17] DOI: 10.1017/jfm.2011.419 · Zbl 1241.76238 · doi:10.1017/jfm.2011.419
[18] DOI: 10.1063/1.2909609 · Zbl 1182.76238 · doi:10.1063/1.2909609
[19] DOI: 10.1017/S002211200500594X · Zbl 1082.76037 · doi:10.1017/S002211200500594X
[20] DOI: 10.1073/pnas.0406743102 · doi:10.1073/pnas.0406743102
[21] DOI: 10.1016/j.jcp.2008.01.021 · Zbl 1388.76194 · doi:10.1016/j.jcp.2008.01.021
[22] DOI: 10.1063/1.1711133 · Zbl 0116.18903 · doi:10.1063/1.1711133
[23] DOI: 10.1017/S0022112004008468 · Zbl 1073.76506 · doi:10.1017/S0022112004008468
[24] DOI: 10.1080/00986449608936523 · doi:10.1080/00986449608936523
[25] US Geol. Surv. Prof. Pap. 562C pp 1– (1969)
[26] C. R. Acad. Sci. Paris Sér. II 312 pp 1499– (1991)
[27] DOI: 10.1017/S0022112093002150 · Zbl 0780.76027 · doi:10.1017/S0022112093002150
[28] DOI: 10.1016/S0301-9322(02)00078-2 · Zbl 1137.76687 · doi:10.1016/S0301-9322(02)00078-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.