×

zbMATH — the first resource for mathematics

Global well-posedness for Euler-Boussinesq system with critical dissipation. (English) Zbl 1284.76089
Summary: We study a fractional diffusion Boussinesq model which couples the incompressible Euler equation for the velocity and a transport equation with fractional diffusion for the temperature. We prove global well-posedness results.

MSC:
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35Q35 PDEs in connection with fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/070682319 · Zbl 1157.76054 · doi:10.1137/070682319
[2] DOI: 10.1007/BF01212349 · Zbl 0573.76029 · doi:10.1007/BF01212349
[3] DOI: 10.1016/j.anihpc.2004.10.010 · Zbl 1157.35469 · doi:10.1016/j.anihpc.2004.10.010
[4] Bony J.-M., Ann. de l’Ecole Norm. Sup. 14 pp 209– (1981)
[5] DOI: 10.1007/s00332-009-9044-3 · Zbl 1177.49064 · doi:10.1007/s00332-009-9044-3
[6] DOI: 10.1016/j.aim.2005.05.001 · Zbl 1100.35084 · doi:10.1016/j.aim.2005.05.001
[7] Chemin J.-Y., Perfect Incompressible Fluids (1998)
[8] DOI: 10.1007/s00220-007-0193-7 · Zbl 1142.35069 · doi:10.1007/s00220-007-0193-7
[9] Constantin P., Indiana Univ. Math. J. 50 pp 97– (2001)
[10] DOI: 10.1088/0951-7715/7/6/001 · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001
[11] DOI: 10.1137/S0036141098337333 · Zbl 0957.76093 · doi:10.1137/S0036141098337333
[12] DOI: 10.1007/s00220-004-1055-1 · Zbl 1309.76026 · doi:10.1007/s00220-004-1055-1
[13] DOI: 10.1007/s00220-009-0821-5 · Zbl 1186.35157 · doi:10.1007/s00220-009-0821-5
[14] DOI: 10.1007/s00205-008-0115-7 · Zbl 1147.76014 · doi:10.1007/s00205-008-0115-7
[15] DOI: 10.1512/iumj.2009.58.3590 · Zbl 1178.35303 · doi:10.1512/iumj.2009.58.3590
[16] DOI: 10.1016/j.jde.2010.07.008 · Zbl 1200.35228 · doi:10.1016/j.jde.2010.07.008
[17] Hou T.Y., Discr. Cont. Dyn. Sys. 12 pp 1– (2005)
[18] DOI: 10.1007/s00222-006-0020-3 · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[19] Stein E.M., Singular Integrals and Differentiability Properties of Functions (1970) · Zbl 0207.13501
[20] DOI: 10.1007/s002050050128 · Zbl 0926.35123 · doi:10.1007/s002050050128
[21] DOI: 10.1063/1.868044 · Zbl 0822.76087 · doi:10.1063/1.868044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.