×

zbMATH — the first resource for mathematics

Hybrid Eulerian-Lagrangian simulations for polymer-turbulence interactions. (English) Zbl 1284.76043
Summary: The effects of polymer additives on decaying isotropic turbulence are numerically investigated using a hybrid approach consisting of Brownian dynamics simulations for an enormous number of dumbbells (of the order of 10 billion, \(O(1{0}^{10} \))) and direct numerical simulations of turbulence making full use of large-scale parallel computations. Reduction of the energy dissipation rate and modification of the kinetic energy spectrum in the dissipation range scale were observed when the reaction term due to the polymer additives was incorporated into the equation of motion for the solvent fluid. An increase in the polymer concentration or Weissenberg number \({W}_{i}\) yielded significant modifications of the turbulence statistics at small scales, such as a suppression of the local energy dissipation fluctuations. A power-law decay of the kinetic energy spectrum \(E(k, t)\sim {k}^{- 4. 7}\) was observed in the wavenumber range below the Kolmogorov length scale when \({W}_{i} = 25\). The generation of intense vortices was suppressed by the polymer additives, consistent with previous studies using the constitutive equations. The field structures of the trace of the polymer stress depended on the intensity of its fluctuation: sheet-like structures were observed for the intermediate intensity region and filamentary structures were observed for the intense region. The results obtained with few polymers and large replicas could approximate those with many polymers and smaller replicas as far as the large-scale statistics were concerned.

MSC:
76A05 Non-Newtonian fluids
76F05 Isotropic turbulence; homogeneous turbulence
76F70 Control of turbulent flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.2735562 · Zbl 1182.76600 · doi:10.1063/1.2735562
[2] DOI: 10.1103/PhysRevE.77.055306 · doi:10.1103/PhysRevE.77.055306
[3] DOI: 10.1209/epl/i2005-10015-5 · doi:10.1209/epl/i2005-10015-5
[4] DOI: 10.1103/PhysRevE.82.066313 · doi:10.1103/PhysRevE.82.066313
[5] DOI: 10.1209/epl/i2006-10222-6 · doi:10.1209/epl/i2006-10222-6
[6] J. Stat. Phys. 118 pp 531– (2005) · Zbl 1064.76089 · doi:10.1007/s10955-004-8820-6
[7] DOI: 10.1103/PhysRevLett.97.264501 · doi:10.1103/PhysRevLett.97.264501
[8] DOI: 10.1103/PhysRevLett.84.4765 · doi:10.1103/PhysRevLett.84.4765
[9] DOI: 10.1017/S0022112010003939 · Zbl 1225.76171 · doi:10.1017/S0022112010003939
[10] DOI: 10.1017/S0022112009006697 · Zbl 1181.76012 · doi:10.1017/S0022112009006697
[11] DOI: 10.1103/PhysRevLett.96.144502 · doi:10.1103/PhysRevLett.96.144502
[12] DOI: 10.1063/1.2732234 · Zbl 1146.76338 · doi:10.1063/1.2732234
[13] DOI: 10.1063/1.861977 · doi:10.1063/1.861977
[14] DOI: 10.1017/S0022112005003666 · Zbl 1070.76030 · doi:10.1017/S0022112005003666
[15] DOI: 10.1103/PhysRevLett.96.214502 · doi:10.1103/PhysRevLett.96.214502
[16] J. Polym. Sci.: Macromol. Rev. 7 pp 263– (1973) · doi:10.1002/pol.1973.230070104
[17] DOI: 10.1017/S0022112005005951 · Zbl 1082.76006 · doi:10.1017/S0022112005005951
[18] DOI: 10.1103/PhysRevLett.92.164501 · doi:10.1103/PhysRevLett.92.164501
[19] DOI: 10.1209/0295-5075/90/44005 · doi:10.1209/0295-5075/90/44005
[20] J. Fluid Mech. 474 pp 193– (2003)
[21] DOI: 10.1063/1.1864133 · Zbl 1187.76312 · doi:10.1063/1.1864133
[22] DOI: 10.1063/1.2166456 · doi:10.1063/1.2166456
[23] DOI: 10.1063/1.2397536 · Zbl 1146.76467 · doi:10.1063/1.2397536
[24] DOI: 10.1016/0377-0257(93)80042-A · Zbl 0774.76012 · doi:10.1016/0377-0257(93)80042-A
[25] DOI: 10.1103/PhysRevLett.102.124503 · doi:10.1103/PhysRevLett.102.124503
[26] DOI: 10.1088/1367-2630/9/10/360 · doi:10.1088/1367-2630/9/10/360
[27] DOI: 10.1038/35073524 · doi:10.1038/35073524
[28] DOI: 10.1038/35011019 · doi:10.1038/35011019
[29] DOI: 10.1103/PhysRevE.75.016310 · doi:10.1103/PhysRevE.75.016310
[30] DOI: 10.1016/j.physd.2010.12.009 · doi:10.1016/j.physd.2010.12.009
[31] J. Comput. Phys 79 pp 373– (1988) · Zbl 0655.76042 · doi:10.1016/0021-9991(88)90022-8
[32] DOI: 10.1103/PhysRevE.78.046311 · doi:10.1103/PhysRevE.78.046311
[33] DOI: 10.1103/PhysRevE.81.036308 · doi:10.1103/PhysRevE.81.036308
[34] DOI: 10.1103/PhysRevLett.96.038304 · doi:10.1103/PhysRevLett.96.038304
[35] DOI: 10.1103/PhysRevE.81.066301 · doi:10.1103/PhysRevE.81.066301
[36] DOI: 10.1209/epl/i2005-10087-1 · doi:10.1209/epl/i2005-10087-1
[37] J. Fluid Mech. 590 pp 117– (2007)
[38] J. Phys. Soc. Japan 69 pp 701– (2000)
[39] DOI: 10.1103/PhysRevLett.84.4761 · doi:10.1103/PhysRevLett.84.4761
[40] DOI: 10.1063/1.870100 · Zbl 1147.76547 · doi:10.1063/1.870100
[41] J. Comput. Phys. 187 pp 1– (2003) · Zbl 1047.76524 · doi:10.1016/S0021-9991(03)00028-7
[42] Turbulence (1995)
[43] J. Stat. Mech. pp P01022– (2012)
[44] Phys. Lett. A 308 pp 445– (2003) · Zbl 01876255 · doi:10.1016/S0375-9601(03)00121-X
[45] DOI: 10.1063/1.1577563 · Zbl 1186.76175 · doi:10.1063/1.1577563
[46] DOI: 10.1017/S0022112004008250 · Zbl 1116.76313 · doi:10.1017/S0022112004008250
[47] DOI: 10.1063/1.3371957 · Zbl 1188.76045 · doi:10.1063/1.3371957
[48] A First Course in Turbulence (1972)
[49] Comput. Phys. Commun. 147 pp 538– (2002)
[50] DOI: 10.1063/1.3137163 · Zbl 1183.76508 · doi:10.1063/1.3137163
[51] The Theory of Polymer Dynamics (1986)
[52] DOI: 10.1063/1.869229 · doi:10.1063/1.869229
[53] J. Chem. Phys. 60 pp 5030– (1974) · doi:10.1063/1.1681018
[54] DOI: 10.1063/1.1563258 · Zbl 1186.76502 · doi:10.1063/1.1563258
[55] DOI: 10.1063/1.2168187 · doi:10.1063/1.2168187
[56] DOI: 10.1017/S0022112099007818 · Zbl 0959.76005 · doi:10.1017/S0022112099007818
[57] DOI: 10.1017/S0022112005004040 · Zbl 1070.76033 · doi:10.1017/S0022112005004040
[58] DOI: 10.1103/PhysRevLett.89.088302 · doi:10.1103/PhysRevLett.89.088302
[59] DOI: 10.1017/CBO9780511607486 · Zbl 1166.76003 · doi:10.1017/CBO9780511607486
[60] Rev. Mod. Phys. 80 pp 225– (2008)
[61] New J. Phys. 10 pp 123015– (2008)
[62] DOI: 10.1103/PhysRevLett.91.034501 · doi:10.1103/PhysRevLett.91.034501
[63] DOI: 10.1103/PhysRevE.71.036307 · doi:10.1103/PhysRevE.71.036307
[64] DOI: 10.1017/S0022112005003939 · Zbl 1070.76042 · doi:10.1017/S0022112005003939
[65] Dynamics of Polymetric Liquids, Vol. 2 Kinetic Theory (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.