×

zbMATH — the first resource for mathematics

Experimental investigation of freely falling thin disks. I: The flow structures and Reynolds number effects on the zigzag motion. (English) Zbl 1284.76035
Summary: This paper describes an experimental investigation of the dynamics of a freely falling thin circular disk in still water. The flow patterns of the disk zigzag motion are studied using dye visualization and particle image velocimetry. Time-resolved disk motions with six degrees of freedom are obtained with a stereoscopic vision method. The flow separation and vortex shedding are found to change with the Reynolds number, \(Re\). At high Reynolds numbers a new dipole vortex is shed that is significantly different from Kármán-type vortices. The vortical structures are mainly composed of leading-edge vortices, a counter-rotating vortex pair and secondary trailing-edge vortices. The amplitude of the horizontal oscillation is also dependent on the Reynolds number with a critical Reynolds number \({{Re}}_{cr} \approx 2000\), where the oscillatory amplitude is proportional to \(Re\) for \(Re< Re_{cr} \), but becomes invariant for \(Re>Re_{cr} \). Three-dimensional dipolar vortices were also observed experimentally.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76D17 Viscous vortex flows
70E99 Dynamics of a rigid body and of multibody systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.2992126 · Zbl 1182.76328 · doi:10.1063/1.2992126
[2] DOI: 10.1017/jfm.2011.43 · Zbl 1241.76035 · doi:10.1017/jfm.2011.43
[3] Philosophiae Naturalis Principia Mathematica (1999)
[4] DOI: 10.1017/S0022112006003685 · Zbl 1108.76310 · doi:10.1017/S0022112006003685
[5] DOI: 10.1126/science.197.4304.691 · doi:10.1126/science.197.4304.691
[6] DOI: 10.1063/1.2061609 · Zbl 1187.76152 · doi:10.1063/1.2061609
[7] Camb. Dublin Math. J. 9 pp 115– (1853)
[8] DOI: 10.1103/PhysRevLett.81.345 · doi:10.1103/PhysRevLett.81.345
[9] DOI: 10.1063/1.869919 · Zbl 1147.76451 · doi:10.1063/1.869919
[10] DOI: 10.1063/1.858712 · Zbl 0815.76012 · doi:10.1063/1.858712
[11] DOI: 10.1146/annurev.fluid.32.1.659 · Zbl 0989.76082 · doi:10.1146/annurev.fluid.32.1.659
[12] DOI: 10.1017/S002211200500594X · Zbl 1082.76037 · doi:10.1017/S002211200500594X
[13] DOI: 10.1175/1520-0469(1971)028&lt;0110:FFBOPS&gt;2.0.CO;2 · doi:10.1175/1520-0469(1971)028<0110:FFBOPS>2.0.CO;2
[14] DOI: 10.1017/S0022112005005847 · Zbl 1082.76038 · doi:10.1017/S0022112005005847
[15] DOI: 10.1111/j.1365-3091.1984.tb01961.x · doi:10.1111/j.1365-3091.1984.tb01961.x
[16] Phys. Fluids 17 pp 1094– (1974)
[17] DOI: 10.1017/S0022112005005859 · Zbl 1082.76012 · doi:10.1017/S0022112005005859
[18] DOI: 10.1002/cjce.5450450306 · doi:10.1002/cjce.5450450306
[19] DOI: 10.1007/s10409-012-0036-4 · Zbl 1288.76003 · doi:10.1007/s10409-012-0036-4
[20] DOI: 10.1142/S0217984909018436 · doi:10.1142/S0217984909018436
[21] Phys. Fluids 23 pp 9– (2011)
[22] DOI: 10.1109/34.888718 · doi:10.1109/34.888718
[23] DOI: 10.1063/1.2980348 · Zbl 1182.76839 · doi:10.1063/1.2980348
[24] DOI: 10.1063/1.1711133 · Zbl 0116.18903 · doi:10.1063/1.1711133
[25] DOI: 10.1146/annurev.fluid.36.050802.121940 · Zbl 1117.76080 · doi:10.1146/annurev.fluid.36.050802.121940
[26] DOI: 10.1016/j.ijmultiphaseflow.2007.05.002 · doi:10.1016/j.ijmultiphaseflow.2007.05.002
[27] DOI: 10.1109/JRA.1987.1087109 · doi:10.1109/JRA.1987.1087109
[28] DOI: 10.1103/PhysRevLett.73.1372 · doi:10.1103/PhysRevLett.73.1372
[29] DOI: 10.1063/1.864241 · doi:10.1063/1.864241
[30] DOI: 10.1017/S0022112071002738 · doi:10.1017/S0022112071002738
[31] DOI: 10.1017/S0022112006002928 · Zbl 1104.76022 · doi:10.1017/S0022112006002928
[32] DOI: 10.1007/s003480070007 · doi:10.1007/s003480070007
[33] DOI: 10.1017/S0022112056000159 · Zbl 0074.20502 · doi:10.1017/S0022112056000159
[34] DOI: 10.1103/PhysRevLett.93.144501 · doi:10.1103/PhysRevLett.93.144501
[35] DOI: 10.1007/s00348-005-0942-3 · doi:10.1007/s00348-005-0942-3
[36] DOI: 10.1038/40817 · doi:10.1038/40817
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.