×

zbMATH — the first resource for mathematics

Homogenization and enhancement of the \(G\)-equation in random environments. (English) Zbl 1284.60126
The homogenization limit when the perturbation parameter tends to zero can be thought of as a small parameter perturbation technique. Here one applies this method to a \(G\)-equation submitted to a general stationary ergodic environment. The framework of the study is the so-called viscosity solution. The averaging properties of this \(G\)-equation cannot be studied by using subadditive theorem which is the standard approach to the homogenization of Hamilton-Jacobi equation in random media. The main contribution of the paper is to propose a new approach to circumvent these problems, which reduces to a controllability estimate and the construction of a random sequence which defines a long-time asymptotic limit.

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
60K37 Processes in random environments
PDF BibTeX Cite
Full Text: DOI
References:
[1] Alvarez, Hamilton-Jacobi equations with partial gradient and application to homogenization, Comm. Partial Differential Equations 32 (5-6) pp 983– (2001) · Zbl 1014.49021
[2] Armstrong, Stochastic homogenization of Hamilton-Jacobi and degenerate Bellman equations in unbounded environments, J. Math. Pures Appl. (9) 97 (5) pp 460– (2012) · Zbl 1246.35029
[3] Baccelli, Elements of queueing theory. Palm martingale calculus and stochastic recurrences (2003) · Zbl 1021.60001
[4] Bardi, On the homogenization of some non-coercive Hamilton-Jacobi-Isaacs equations, Commun. Pure Appl. Anal. 12 (1) pp 207– (2012) · Zbl 1264.35019
[5] Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit, Nonlinear Anal. 9 (9) pp 1123– (1993) · Zbl 0816.35081
[6] Barles, Some homogenization results for non-coercive Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations 32 (4) pp 449– (2007) · Zbl 1136.35004
[7] Barron, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations 32 (12) pp 1713– (1990) · Zbl 0732.35014
[8] Caffarelli, Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media, Invent. Math. 180 (2) pp 301– (2010) · Zbl 1192.35048
[9] Caffarelli, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Comm. Pure Appl. Math. 58 (3) pp 319– (2005) · Zbl 1063.35025
[10] Cannarsa, Interior sphere property of attainable sets and time optimal control problems, ESAIM Control Optim. Calc. Var. 12 (2) pp 350– (2006) · Zbl 1105.93007
[11] Cardaliaguet, Ergodicity of Hamilton-Jacobi equations with a noncoercive nonconvex Hamiltonian in R2/Z2, Ann. Inst. H. Poincarée Anal. Non Linéeaire 32 (3) pp 837– (2010) · Zbl 1201.35089
[12] Cardaliaguet, Homogenization and enhancement for the G-equation, Arch. Ration. Mech. Anal. 199 (2) pp 527– (2011) · Zbl 1294.35002
[13] Crandall, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N. S.) 27 (1) pp 1– (1992) · Zbl 0755.35015
[14] Dal Maso, Nonlinear stochastic homogenization, Ann. Mat. Pura Appl. (4) 144 pp 347– (1986) · Zbl 0607.49010
[15] Dal Maso, Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math. 368 pp 28– (1986) · Zbl 0582.60034
[16] Daley, An introduction to the theory of point processes. Vol. II. General theory and structure (2008) · Zbl 1159.60003
[17] Imbert, Homogenization of first-order equations with u/-periodic Hamiltonians. I. Local equations, Arch. Ration. Mech. Anal. 187 (1) pp 49– (2008) · Zbl 1127.70009
[18] Kakutani, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 pp 247– (1951)
[19] Kesten, Percolation theory for mathematicians (1982) · Zbl 0522.60097
[20] Kesten, A shape theorem for the spread of an infection, Ann. of Math. (2) 167 (3) pp 701– (2008) · Zbl 1202.92077
[21] Kosygina, Stochastic homogenization for Hamilton-Jacobi-Bellman equations, Comm. Pure Appl. Math. 59 (10) pp 1489– (2006) · Zbl 1111.60055
[22] Kosygina, Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium, Comm. Pure Appl. Math. 61 (6) pp 816– (2008) · Zbl 1144.35008
[23] Kozlov, The averaging method and walks in inhomogeneous environments, Uspekhi Mat. Nauk 40 (2(242)) pp 61– (1985) · Zbl 0615.60063
[24] Lions , P.-L. Papanicolaou , G. Varadhan , S. R. S. Homogenization of Hamilton-Jacobi equations Unpublished manuscript 1986
[25] Lions, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting, Comm. Pure Appl. Math. 56 (10) pp 1501– (2003) · Zbl 1050.35012
[26] Lions, Stochastic homogenization of Hamilton-Jacobi and ”viscous”-Hamilton-Jacobi equations with convex nonlinearities–revisited, Commun. Math. Sci. 8 (2) pp 627– (2010) · Zbl 1197.35031
[27] Neveu, (French) École d’Été de Probabilités de Saint-Flour, VI-1976 pp 249– (1977)
[28] Nolen, Homogenization of the G-equation with incompressible random drift, Commun. Math. Sci. 9 (2) pp 561– (2011) · Zbl 1241.35021
[29] Papanicolaou, Random Fields, Vol. I, II (Esztergom, 1979) pp 835– (1981)
[30] Papanicolaou, Statistics and probability: Essays in honor of C. R. Rao pp 547– (1982)
[31] Rezakhanlou, Homogenization for stochastic Hamilton-Jacobi equations, Arch. Ration. Mech. Anal. 151 (4) pp 77– (2000) · Zbl 0954.35022
[32] Schwab, Stochastic homogenization of Hamilton-Jacobi equations in stationary ergodic spatio-temporal media, Indiana Univ. Math. J. 58 (2) pp 537– (2009) · Zbl 1180.35082
[33] Schwab , R. Stochastic homogenization for some nonlinear integro-differential equations 2011
[34] Souganidis, Stochastic homogenization of Hamilton-Jacobi equations and some applications, Asymptot. Anal. 20 (1) pp 1– (1999) · Zbl 0935.35008
[35] Steele, Kingman’s subadditive ergodic theorem, Ann. Inst. H. Poincaré Probab. Statist. 25 (1) pp 93– (1989)
[36] Xin, Periodic homogenization of inviscid G-equation for incompressible flows, Commun. Math. Sci. 8 (4) pp 1067– (2010) · Zbl 1372.76085
[37] Zhikov, Averaging of parabolic operators, Trudy Moskov. Mat. Obshch. 45 pp 182– (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.