×

Local gradient estimates and existence of blow-up solutions to a class of quasilinear elliptic equations. (English) Zbl 1284.35190

From the introduction: In this paper we study the existence of minimal and maximal positive blow-up solutions, that is \[ \lim_{_{\substack{ \text{dist}(x,\partial\Omega)\to 0,\\ x\in\Omega}}}u(x)=+\infty, \] to the quasilinear elliptic equation \[ -\Delta u+ H(x,u,\nabla u) = f\quad\text{in}\;\Omega, \tag{1} \] where \(\Omega\) is a smooth bounded domain, \(f\in L^\infty_{\text{loc}}(\Omega)\), and \(H\) is an appropriate function.

MSC:

35J62 Quasilinear elliptic equations
35B45 A priori estimates in context of PDEs
35B44 Blow-up in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bandle, C.; Giarrusso, E., Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Adv. differential equations, 1, 133-150, (1996) · Zbl 0840.35034
[2] Bandle, C.; Marcus, M., On second order effects in the boundary behavior of large solutions of semilinear elliptic problems, Differential integral equations, 11, 23-34, (1998) · Zbl 1042.35535
[3] Bernstein, S., Sur la généralization du probléme de Dirichlet II, Math. ann., 69, 82-136, (1910) · JFM 41.0427.02
[4] Bieberbach, L., δu=eu und die automorphen funktionen, Math. ann., 77, 173-212, (1916)
[5] Boccardo, L.; Murat, F.; Puel, J., Existence de solutions faibles pour des équations elliptiques quasilinéaires à croissance quadratique: non linear partial differential equations and their applications, (), 19-73
[6] Del Pino, M.; Letelier, R., The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear anal., 48, 897-904, (2002) · Zbl 1142.35431
[7] Díaz, G.; Letelier, R., Unicidad de soluciones locales en algunas ecuaciones semilineales elípticas, (), 301-305
[8] Dı́az, G.; Letelier, R., Local estimates: uniqueness of solutions to some nonlinear elliptic equations, (), 171-186 · Zbl 0860.35028
[9] Díaz, G.; Letelier, R.; Ortega, J., Existence of a unique solution to a quasilinear elliptic equations on a bounded domain, Panamer. math. J., 6, 1-35, (1996) · Zbl 0874.35036
[10] Dynkin, E.; Kuznetsov, S., Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. pure appl. math., 49, 125-176, (1996) · Zbl 0861.60083
[11] García-Melián, J.; Letelier, R.; Sabina de Lis, J., Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. amer. math. soc., 129, 3593-3602, (2001) · Zbl 0989.35044
[12] Gilbarg, D.; Trudinger, N., Elliptic partial differential equations of second order, (1983), Springer-Verlag · Zbl 0562.35001
[13] Greco, A.; Porru, G., Asymptotic estimates and convexity of large solutions to semilinear elliptic equations, Differential integral equations, 10, 219-229, (1997) · Zbl 0889.35028
[14] Keller, J., On solutions of δu=f(u), Comm. pure appl. math., 10, 503-510, (1957) · Zbl 0090.31801
[15] Keller, J., Electrohidrodinamics I. the equilibrium of a charged gas in a container, J. rational mech. anal., 4, 715-724, (1956) · Zbl 0070.44207
[16] Kondrat’ev, V.; Nikishkin, V., Asymptotics, near the boundary, of a solution of a singular boundary-value problem for a semilinear elliptic equations, Differ. uravn., Differential equations, 26, 345-348, (1990), English translation: · Zbl 0706.35054
[17] Lair, A.V., A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations, J. math. anal. appl., 240, 205-218, (1999) · Zbl 1058.35514
[18] Lasry, J.; Lions, P.L., Nonlinear elliptic equations with singular boundary conditions and stochastic control with state contrains, Math. ann., 283, 583-630, (1989) · Zbl 0688.49026
[19] Lazer, A.; McKenna, P., On a singular nonlinear elliptic boundary value problems for the monge – ampere operator, J. math. anal. appl., 197, 341-362, (1996) · Zbl 0856.35042
[20] Letelier, R.; Ortega, J., Local gradient estimates and existence of minimal solutions of some nonlinear elliptic equations blowing up on the boundary, Rev. acad. Canaria cienc., 5, 111-124, (1993) · Zbl 0822.35055
[21] Lions, P.L., Quelques remarques sur LES problemes elliptiques quasilineaires du second order, J. anal. math., 45, 234-254, (1985) · Zbl 0614.35034
[22] Lions, P.L., Résolutions de problèmes elliptiques quasilinéaires, Arch. rational mech. anal., 74, 336-353, (1980) · Zbl 0449.35036
[23] Loewner, C.; Nirenberg, L., Partial differential equations invariant under conformal or projective transformations, (), 345-348
[24] Marcus, M.; Verón, L., Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. inst. H. Poincaré, 14, 237-274, (1997) · Zbl 0877.35042
[25] McKenna, P.; Reichel, W.; Walter, W., Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up, Nonlinear anal., 28, 1213-1225, (1997) · Zbl 0868.35031
[26] Osserman, R., On the inequality δu⩾f(u), Pacific J. math., 1641-1647, (1957) · Zbl 0083.09402
[27] Pohozaev, S., The Dirichlet problem for the equation δu=u2, Dokl. akad. nauk SSSR, Soviet math., 1, 1143-1146, (1960), English translation: · Zbl 0097.08503
[28] Rademacher, H., Finige besondere probleme partieller differentialgleichungen, (), 838-845
[29] Serrin, J., The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. trans. roy. soc. London ser. A, 264, 413-496, (1969) · Zbl 0181.38003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.