×

zbMATH — the first resource for mathematics

Several classes of complete permutation polynomials. (English) Zbl 1284.05012
Summary: In this paper, three classes of monomials and one class of trinomials over finite fields of even characteristic are proposed. They are proved to be complete permutation polynomials.

MSC:
11T06 Polynomials over finite fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akbary, A.; Ghioca, D.; Wang, Q., On constructing permutations of finite fields, Finite Fields Appl., 17, 1, 51-67, (2011) · Zbl 1281.11102
[2] Charpin, P.; Kyureghyan, G. M., Cubic monomial bent functions: a subclass of \(\mathcal{M}\), SIAM J. Discrete Math., 22, 2, 650-665, (2008) · Zbl 1171.11062
[3] Ding, C.; Xiang, Q.; Yuan, J.; Yuan, P., Explicit classes of permutation polynomials of \(\mathbb{F}_{3^{3 m}}\), Sci. China Ser. A, 53, 4, 639-647, (2009) · Zbl 1215.11113
[4] Dobbertin, H., One-to-one highly nonlinear power functions on \(\mathit{GF}(2^n)\), Appl. Algebra Eng. Commun. Comput., 9, 2, 139-152, (1998) · Zbl 0924.94026
[5] Fernando, N.; Hou, X., A piecewise construction of permutation polynomials over finite fields, Finite Fields Appl., 18, 6, 1184-1194, (2012) · Zbl 1254.05008
[6] Gács, A.; Héger, T.; Nagy, Z. L.; Pálvölgyi, D., Permutations, hyperplanes and polynomials over finite fields, Finite Fields Appl., 16, 5, 301-314, (2010) · Zbl 1245.11116
[7] Glynn, D., Two new sequences of ovals in finite Desarguesian planes of even order, (Casse, L. R.A., Combinatorial Mathematics X, Lect. Notes Math., vol. 1036, (1983), Springer Berlin), 217-229
[8] Helleseth, T., Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., 16, 3, 209-232, (1976) · Zbl 0348.94017
[9] Hirschfeld, J. W.P., Ovals in Desarguesian planes of even order, Ann. Mat. Pura Appl., 102, 1, 79-89, (1975) · Zbl 0293.50015
[10] Hollmann, H. D.L.; Xiang, Q., A class of permutation polynomials of \(\mathbb{F}_{2^m}\) related to dickson polynomials, Finite Fields Appl., 11, 1, 111-122, (2005) · Zbl 1073.11074
[11] Hou, X., A new approach to permutation polynomials over finite fields, Finite Fields Appl., 18, 3, 492-521, (2012) · Zbl 1273.11169
[12] Hou, X.; Ly, T., Necessary conditions for reversed dickson polynomials to be permutational, Finite Fields Appl., 16, 6, 436-448, (2010) · Zbl 1209.11103
[13] Laigle-Chapuy, Y., Permutation polynomials and applications to coding theory, Finite Fields Appl., 13, 1, 58-70, (2007) · Zbl 1107.11048
[14] Leander, N. G., Monomial bent functions, IEEE Trans. Inf. Theory, 52, 2, 738-743, (2006) · Zbl 1161.94414
[15] Li, N.; Helleseth, T.; Tang, X., Further results on a class of permutation polynomials over finite fields, Finite Fields Appl., 22, 16-23, (2013) · Zbl 1285.05004
[16] Lidl, R.; Niederreiter, H., Finite fields, Encycl. Math. Appl., (1997), Cambridge University Press
[17] Maschietti, A., Difference sets and hyperovals, Des. Codes Cryptogr., 14, 1, 89-98, (1998) · Zbl 0887.05010
[18] Mullen, G. L.; Niederreiter, H., Dickson polynomials over finite fields and complete mappings, Can. Math. Bull., 30, 1, 19-27, (1987) · Zbl 0576.12020
[19] Niederreiter, H.; Robinson, K. H., Complete mappings of finite fields, J. Aust. Math. Soc. A, 33, 2, 197-212, (1982) · Zbl 0495.12018
[20] Niho, Y., Multi-valued cross-correlation functions between two maximal linear recursive sequences, (1972), University of Southern California Los Angeles, PhD dissertation
[21] Payne, S. E., A complete determination of translation ovoids in finite Desarguesian planes, Atti Accad. Naz. Lincei Rend., 51, 8, 328-331, (1971) · Zbl 0238.50018
[22] Qu, L.; Tan, Y.; Tan, C. H.; Li, C., Constructing differentially 4-uniform permutations over \(\mathbb{F}_{2^{2 k}}\) via the switching method, IEEE Trans. Inf. Theory, 59, 7, 4675-4686, (2013) · Zbl 1364.94565
[23] Segre, B.; Bartocci, U., Ovali ed altre curve nei piani di Galois di caratteristica due, Acta Arith., 18, 1, 423-449, (1971) · Zbl 0219.50016
[24] Wan, D., On a problem of Niederreiter and Robinson about finite fields, J. Aust. Math. Soc. A, 41, 3, 336-338, (1986) · Zbl 0607.12009
[25] Wan, Z., Geometry of classical groups over finite fields, (2002), Science Press Beijing
[26] Yuan, J.; Ding, C., Four classes of permutation polynomials of \(\mathbb{F}_{2^m}\), Finite Fields Appl., 13, 4, 869-876, (2007) · Zbl 1167.11045
[27] Yuan, J.; Ding, C.; Wang, H.; Pieprzyk, J., Permutation polynomials of the form \((x^p - x + \delta)^s + L(x)\), Finite Fields Appl., 14, 2, 482-493, (2008) · Zbl 1211.11136
[28] Yuan, P., More explicit classes of permutation polynomials of \(\mathbb{F}_{3^{3 m}}\), Finite Fields Appl., 16, 2, 88-95, (2010)
[29] Yuan, P.; Ding, C., Permutation polynomials over finite fields from a powerful lemma, Finite Fields Appl., 17, 6, 560-574, (2011) · Zbl 1258.11100
[30] Yuan, Y.; Tong, Y.; Zhang, H., Complete mapping polynomials over finite field \(\mathbb{F}_{16}\), (Arithmetic of Finite Fields, Lect. Notes Comput. Sci., vol. 4547, (2007), Springer Berlin), 147-158 · Zbl 1213.11193
[31] Zha, Z.; Hu, L., Two classes of permutation polynomials over finite fields, Finite Fields Appl., 18, 4, 781-790, (2012) · Zbl 1288.11111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.