×

zbMATH — the first resource for mathematics

Robust controller design for infinite-dimensional exosystems. (English) Zbl 1283.93102
Summary: In this paper, we consider robust output regulation of distributed parameter systems with infinite-dimensional exosystems capable of generating polynomially growing signals. We design an observer-based error feedback controller solving the control problem. The controller is chosen in such a way that it incorporates an internal model of the infinite-dimensional exosystem. The remaining parameters of the controller are chosen to stabilize the closed-loop system strongly. We also analyze the classes of signals generated by the exosystem. In particular, we explore the connection between the smoothness properties of the reference and disturbance signals and the strictness of the conditions required for the existence of a controller solving the robust output regulation problem.

MSC:
93B35 Sensitivity (robustness)
93B52 Feedback control
93C15 Control/observation systems governed by ordinary differential equations
93D21 Adaptive or robust stabilization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Byrnes, Output regulation problem for linear distributed parameter systems, IEEE Transactions on Automatic Control 45 (12) pp 2236– (2000) · Zbl 1056.93552 · doi:10.1109/9.895561
[2] Hämäläinen, A finite-dimensional robust controller for systems in the CD-algebra, IEEE Transactions on Automatic Control 45 (3) pp 421– (2000) · Zbl 0972.93014 · doi:10.1109/9.847722
[3] Hämäläinen, Robust regulation of distributed parameter systems with infinite-dimensional exosystems, SIAM Journal on Control and Optimization 48 (8) pp 4846– (2010) · Zbl 1214.93082 · doi:10.1137/090757976
[4] Immonen, On the internal model structure for infinite-dimensional systems: two common controller types and repetitive control, SIAM Journal on Control and Optimization 45 (6) pp 2065– (2007) · Zbl 1123.37052 · doi:10.1137/050638916
[5] Logemann, Low-gain control of uncertain regular linear systems, SIAM Journal on Control and Optimization 35 (1) pp 78– (1997) · Zbl 0873.93044 · doi:10.1137/S0363012994275920
[6] Pohjolainen, Robust multivariable PI-controller for infinite-dimensional systems, IEEE Transactions on Automatic Control AC-27 (1) pp 17– (1982) · Zbl 0493.93029 · doi:10.1109/TAC.1982.1102887
[7] Rebarber, Internal model based tracking and disturbance rejection for stable well-posed systems, Automatica 39 (9) pp 1555– (2003) · Zbl 1028.93012 · doi:10.1016/S0005-1098(03)00192-4
[8] Schumacher, Finite-dimensional regulators for a class of infinite-dimensional systems, Systems & Control Letters 3 pp 7– (1983) · Zbl 0524.93026 · doi:10.1016/0167-6911(83)90032-4
[9] Paunonen, Internal model theory for distributed parameter systems, SIAM Journal on Control and Optimization 48 (7) pp 4753– (2010) · Zbl 1214.93054 · doi:10.1137/090760957
[10] Paunonen L Pohjolainen S On decomposing of infinite-dimensional Sylvester equations Proceedings of the European Control Conference 2009 2009 844 849
[11] Pohjolainen SA Hämäläinen TT Robust regulation for infinite-dimensional systems Proceedings of the European Control Conference 2007 2007 5008 5014
[12] Francis, The internal model principle for linear multivariable regulators, Applied Mathematics & Optimization 2 (2) pp 170– (1975) · Zbl 0351.93015 · doi:10.1007/BF01447855
[13] Hara, Repetitive control system: A new type servo system for periodic exogeneous signals, IEEE Transactions on Automatic Control 33 (7) pp 659– (1988) · Zbl 0662.93027 · doi:10.1109/9.1274
[14] Yamamoto, Progress in Systems and Control Theory, in: Essays on Control: Perspectives in the Theory and its Applications pp 191– (1993) · doi:10.1007/978-1-4612-0313-1_7
[15] Immonen, Output regulation of periodic signals for DPS: an infinite-dimensional signal generator, IEEE Transactions on Automatic Control 50 (11) pp 1799– (2005) · Zbl 1365.93174 · doi:10.1109/TAC.2005.858643
[16] Weiss, Repetitive control of MIMO systems using H design, Automatica 35 (7) pp 1185– (1999) · Zbl 0949.93043 · doi:10.1016/S0005-1098(99)00036-9
[17] Huang, Nonlinear Output Regulation, Theory and Applications (2004) · Zbl 1087.93003 · doi:10.1137/1.9780898718683
[18] Ho, Spectral assignability of systems with scalar control and application to a degenerate hyperbolic system, SIAM Journal on Control and Optimization 24 (6) pp 1212– (1986) · Zbl 0605.93024 · doi:10.1137/0324073
[19] Rebarber, Spectral assignability for distributed parameter systems with unbounded scalar control, SIAM Journal on Control and Optimization 27 (1) pp 148– (1989) · Zbl 0681.93037 · doi:10.1137/0327009
[20] Xu, On spectrum and Riesz basis assignment of infinite-dimensional linear systems by bounded linear feedbacks, SIAM Journal on Control and Optimization 34 (2) pp 521– (1996) · Zbl 0853.93055 · doi:10.1137/S0363012993250712
[21] Zhaoqiang G Guangtian Z Yonghao M Pole assignment for infinite dimensional generalized system Proceedings of the 3 rd World Congress on Intelligent Control and Automation 2000 2928 2932
[22] Iorio, Fourier Analysis and Partial Differential Equations (2001) · doi:10.1017/CBO9780511623745
[23] Immonen, What periodic signals can an exponentially stabilizable linear feedforward control system asymptotically track?, SIAM Journal on Control and Optimization 44 (6) pp 2253– (2006) · Zbl 1125.93020 · doi:10.1137/040613093
[24] Arendt, Vector-valued Laplace Transforms and Cauchy Problems (2001) · Zbl 0978.34001 · doi:10.1007/978-3-0348-5075-9
[25] Paunonen, Perturbation of strongly and polynomially stable Riesz-spectral operators, Systems & Control Letters 60 pp 234– (2011) · Zbl 1217.47081 · doi:10.1016/j.sysconle.2011.01.005
[26] Luo, Stability and Stabilization of Infinite Dimensional Systems with Applications (1999) · Zbl 0922.93001 · doi:10.1007/978-1-4471-0419-3
[27] Phông, The operator equation AX - XB = C with unbounded operators A and B and related abstract Cauchy problems, Mathematische Zeitschrift 208 pp 567– (1991) · Zbl 0726.47029 · doi:10.1007/BF02571546
[28] Shun-Hua, On spectrum distribution of completely controllable linear systems, SIAM Journal on Control and Optimization 19 (6) pp 730– (1981) · Zbl 0482.93035 · doi:10.1137/0319048
[29] Engel, One-parameter Semigroups for Linear Evolution Equations (2000) · Zbl 0952.47036
[30] Staffans, Well-Posed Linear Systems (2005) · doi:10.1017/CBO9780511543197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.