×

zbMATH — the first resource for mathematics

Resummation of non-global logarithms at finite \(N_c\). (English) Zbl 1282.81186
Summary: In the context of inter-jet energy flow, we present the first quantitative result of the resummation of non-global logarithms at finite \(N_c\). This is achieved by refining Weigert’s approach in which the problem is reduced to the simulation of associated Langevin dynamics in the space of Wilson lines. We find that, in \(e^+e^-\) annihilation, the exact result is rather close to the result previously obtained in the large\(-Nc\) mean field approximation. However, we observe enormous event-by-event fluctuations in the Langevin process which may have significant consequences in hadron collisions.

MSC:
81V10 Electromagnetic interaction; quantum electrodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cox, B. E.; Forshaw, J. R.; Pilkington, A. D., Phys. Lett. B, 696, 87, (2011)
[2] Englert, C.; Spannowsky, M.; Takeuchi, M., JHEP, 1206, 108, (2012)
[3] Berger, C. F.; Marcantonini, C.; Stewart, I. W.; Tackmann, F. J.; Waalewijn, W. J., JHEP, 1104, 092, (2011)
[4] Becher, T.; Neubert, M., JHEP, 1207, 108, (2012)
[5] Banfi, A.; Monni, P. F.; Salam, G. P.; Zanderighi, G., Phys. Rev. Lett., 109, 202001, (2012)
[6] Dasgupta, M.; Salam, G. P., Phys. Lett. B, 512, 323, (2001)
[7] Dasgupta, M.; Salam, G. P., JHEP, 0203, 017, (2002)
[8] Banfi, A.; Marchesini, G.; Smye, G., JHEP, 0208, 006, (2002)
[9] Marchesini, G.; Mueller, A. H., Phys. Lett. B, 575, 37, (2003)
[10] Weigert, H., Nucl. Phys. B, 685, 321, (2004)
[11] Balitsky, I., Nucl. Phys. B, 463, 99, (1996)
[12] Jalilian-Marian, J.; Kovner, A.; Leonidov, A.; Weigert, H., Phys. Rev. D, 59, 014014, (1998)
[13] Iancu, E.; Leonidov, A.; McLerran, L. D., Nucl. Phys. A, 692, 583, (2001)
[14] Kovchegov, Y. V., Phys. Rev. D, 60, 034008, (1999)
[15] Blaizot, J.-P.; Iancu, E.; Weigert, H., Nucl. Phys. A, 713, 441, (2003)
[16] Rummukainen, K.; Weigert, H., Nucl. Phys. A, 739, 183, (2004)
[17] Hatta, Y.; Iancu, E.; Itakura, K.; McLerran, L., Nucl. Phys. A, 760, 172, (2005)
[18] Hatta, Y., JHEP, 0811, 057, (2008)
[19] Avsar, E.; Hatta, Y.; Matsuo, T., JHEP, 0906, 011, (2009)
[20] Zinn-Justin, J., Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys., 113, 1, (2002), Chapter 4
[21] Lappi, T.; Mantysaari, H., Eur. Phys. J. C, 73, 2307, (2013)
[22] Hatta, Y.; Ueda, T., Phys. Rev. D, 80, 074018, (2009)
[23] Kovchegov, Y. V.; Kuokkanen, J.; Rummukainen, K.; Weigert, H., Nucl. Phys. A, 823, 47, (2009)
[24] Salam, G. P., Nucl. Phys. B, 449, 589, (1995)
[25] Hatta, Y.; Mueller, A. H., Nucl. Phys. A, 789, 285, (2007)
[26] Avsar, E.; Hatta, Y., JHEP, 0809, 102, (2008)
[27] Hatta, Y.; Marquet, C.; Royon, C.; Soyez, G.; Ueda, T.; Werder, D.
[28] Dumitru, A.; Jalilian-Marian, J.; Lappi, T.; Schenke, B.; Venugopalan, R., Phys. Lett. B, 706, 219, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.