×

zbMATH — the first resource for mathematics

Image segmentation using Euler’s elastica as the regularization. (English) Zbl 1282.65037
Summary: The active contour segmentation model of T. F. Chan and L. A. Vese [IEEE Trans. Image Process. 10, No. 2, 266–277 (2000; Zbl 1039.68779)] has been widely used and generalized in different contexts in the literature. One possible modification is to employ Euler’s elastica as the regularization of active contour. In this paper, we study the new effects of this modification and validate them numerically using the augmented Lagrangian method.

MSC:
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ambrosio, L; Masnou, S, A direct variational approach to a problem arising in image reconstruction, Interfaces Free Bound., 5, 63-81, (2003) · Zbl 1029.49037
[2] Ambrosio, L., Masnou, S.: On a Variational Problem Arising in Image Reconstruction, vol. 147. Birkhauser, Basel (2004) · Zbl 1111.68732
[3] Ambrosio, L; Tortorelli, VM, Approximation of functionals depending on jumps by elliptic functionals via gamma convergence, Comm. Pure Appl. Math., 43, 999-1036, (1990) · Zbl 0722.49020
[4] Bae, E; Shi, J; Tai, X-C, Graph cuts for curvature based image denoising, IEEE Trans. Image Process., 20, 1199-1210, (2011) · Zbl 1372.94015
[5] Bertozzi, AL; Greer, JB, Low curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes, Comm. Pure Appl. Math., 57, 764-790, (2004) · Zbl 1058.35083
[6] Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. Computer Graphics, SIGGRAPH (2000) · Zbl 0780.49028
[7] Caselles, V; Catte, F; Coll, T; Dibos, F, A geometric model for active contours, Numerische Mathematik, 66, 1-31, (1993) · Zbl 0804.68159
[8] Caselles, V; Kimmel, R; Sapiro, G, Geodesic active contours, Int. J. Comput. Vis., 22, 61-79, (1997) · Zbl 0894.68131
[9] Chambolle, A; Lions, PL, Image recovery via total variation minimization and related problems, Numer. Math., 76, 167-188, (1997) · Zbl 0874.68299
[10] Chan, T; Vese, LA, Active contours without edges, IEEE Trans. Image Process., 10, 266-277, (2001) · Zbl 1039.68779
[11] Chan, T; Esedoglu, S; Nikolova, M, Algorithms for finding global minimizers of denoising and segmentation models, SIAM J. Appl. Math., 66, 1632-1648, (2006) · Zbl 1117.94002
[12] Chan, T; Kang, SH; Shen, JH, Euler’s elastica and curvature based inpaintings, SIAM J. Appl. Math, 63, 564-592, (2002) · Zbl 1028.68185
[13] Chan, T., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. vol. 11(2), pp. 130-141, June 2000 (Special Issue of “Scale Space Theories in Computer Vision ’99”). June (2000) · Zbl 1372.94015
[14] Cremers, D; Tischhuser, F; Weickert, J; Schnrr, C, Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional, Int. J. Comput. Vis., 50, 295-313, (2002) · Zbl 1012.68785
[15] El-Zehiry, N., Grady, L.: Fast global optimization of curvature. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and, Pattern Recognition, pp. 3257-3264, (2010) · Zbl 1017.94505
[16] Elsey, M; Esedoḡlu, S, Analogue of the total variation denoising model in the context of geometry processing, SIAM J. Multiscale Model. Simul., 7, 1549-1573, (2009) · Zbl 1185.68803
[17] Esedoḡlu, S; Shen, J, Digital inpainting based on the Mumford-Shah-Euler image model, Eur. J. Appl. Math., 13, 353-370, (2002) · Zbl 1017.94505
[18] Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger, New York (1979)
[19] Kass, M; Witkin, A; Terzopoulos, D, Snakes: active contour models, Int. J. Comput. Vis., 1, 321-331, (1988)
[20] Li, C., Kao, C., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy, Comput. Vis. Pattern Recognit. (CVPR), pp. 1-7, (2007) · Zbl 1028.68185
[21] Lie, J; Lysaker, M; Tai, XC, A binary level set model and some applications to Mumford-Shah image segmentation, IEEE Trans. Image Process., 15, 1171-1181, (2006) · Zbl 1286.94018
[22] Lions, PL; Mercier, B, Splitting algorithms for the sume of two nonlinear opertors, SIAM J. Numer. Amal., 16, 964-979, (1979) · Zbl 0426.65050
[23] Malladi, R., Sethian, J.A., Vemuri, B.C.: A topology independent shape modeling scheme. In: Proceedings SPIE Conference Geometric Methods Computer Vision II, vol. 2031, San Diego, CA, pp. 246-258, (1993) · Zbl 0874.68299
[24] Masnou, S, Disocclusion: a variational approach using level lines, IEEE Trans. Image Process., 11, 68-76, (2002)
[25] Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings IEEE International Conference on Image Processing, Chicago, IL, pp. 259-263 (1998) · Zbl 0722.49020
[26] Mumford, D; Shah, J, Optimal approximation by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 577-685, (1989) · Zbl 0691.49036
[27] Nitzberg, M., Mumford, D., Shiota, T.: Filering, Segmentation, and Depth, Lecture Notes in Computer Science, vol. 662. Springer, Berlin (1993) · Zbl 0801.68171
[28] Osher, S; Sethian, JA, Fronts propagating with curvature-dependent speed-algorithm based on hamiltonjacobi formulations, J. Comput. Phys., 79, 12-49, (1988) · Zbl 0659.65132
[29] Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002) · Zbl 1026.76001
[30] Rockafellar, RT, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1, 97-116, (1976) · Zbl 0402.90076
[31] Rudin, L; Osher, S; Fatemi, E, Nonlinear total variation based noise removal algorithm, Phys. D, 60, 259-268, (1992) · Zbl 0780.49028
[32] Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: a linear programming relaxation. IEEE Int. Conf. Comput. Vis. (ICCV), (2009) · Zbl 1254.68282
[33] Schoenemann, T., Kahl, F., Masnou, S., Cremers, D.: A linear framework for region-based image segmentation and inpainting involving curvature penalization, to apppear in Int. J. Comput. Vis. (2012) · Zbl 1254.68282
[34] Tai, XC; Hahn, J; Chung, GJ, A fast algorithm for euler’s elastica model using augmented Lagrangian method, SIAM J. Imaging Sci., 4, 313-344, (2011) · Zbl 1215.68262
[35] Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271-293 (2002) · Zbl 1012.68782
[36] Wu, C; Tai, XC, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3, 300-339, (2010) · Zbl 1206.90245
[37] Zhu, W; Chan, T, A variational model for capturing illusory contours using curvature, J. Math. Imaging Vis., 27, 29-40, (2007)
[38] Zhu, W., Chan, T., Esedoḡlu, S.: Segmentation with depth: a level set approach. SIAM J. Sci. Comput. 28, 1957-1973 (2006) · Zbl 1344.68266
[39] Zhu, W., Tai, X.C., Chan, T.: Augmented Lagrangian method for a mean curvature based image denoising model, To appear in Inverse Problems and Imaging · Zbl 1311.94015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.