Cardinal splines in nonparametric regression. (English) Zbl 1282.62097

Summary: We discuss a nonparametric regression model on an equidistant grid of the real line. A class of kernel type estimates based on the so-called fundamental cardinal splines will be introduced. Asymptotic optimality of these estimates will be established for certain functional classes. This model explains the often mentioned heuristic fact that cubic splines are adequate for most practical applications.


62G08 Nonparametric regression and quantile regression
65D07 Numerical computation using splines
Full Text: DOI


[1] N. I. Akhiezer, Theory of Approximation (Frederick Ungar Publ., New York, 1956). · Zbl 0072.43701
[2] L. Artiles and B. Levit, ”Adaptive Regression on the Real Line in Classes of Smooth Functions”, Austrian J. Statist. 32, 99–129 (2003).
[3] R. L. Eubank, Spline Smoothing and Nonparametric Regression, 2nd ed. (Marcel Dekker, New York, 1999). · Zbl 0936.62044
[4] W. Feller, An Introduction to Probability Theory and Its Applications, (Wiley, New York, 1966), Vol. II. · Zbl 0138.10207
[5] O. Lepski and B. Levit, ”Adaptive Minimax Estimation of Infinitely Differentiable Functions”, Math. Methods Statist. 7, 123–156 (1998). · Zbl 1103.62332
[6] M. J. Marsden, F. B. Richards, and S. D. Riemenschneider, ”Cardinal Spline Interpolation Operators on l p Data”, J. Math., Indiana Univ. 24, 667–689 (1975). · Zbl 0297.41009
[7] C. A. Micchelli, ”Infinite Spline Interpolation”, in Approximation in Theorie and Praxis (Bibliographisches Institute, Mannheim, 1979), pp. 209–238.
[8] M. Reimer, ”The Main Roots of the Euler-Frobenius Polynomials”, J. Approximation Theory 45, 358–362 (1985). · Zbl 0581.41015
[9] I. J. Schoenberg, Cardinal Spline Interpolation (SIAM, New York, 1973). · Zbl 0264.41003
[10] I. J. Schoenberg, ”Cardinal Interpolation and Spline Functions, II”, J. Approximation Theory 6, 404–420 (1974). · Zbl 0268.41004
[11] I. J. Schoenberg, Selected Papers, Ed. by Carl de Boor (Birkhäuser, Boston, 1988). · Zbl 0933.01033
[12] I. J. Schoenberg and A. Sharma, ”The Interpolatory Background of the Maclaurin Quadrature Formula”, Bull. Amer. Math. Soc. 77, 1034–1038 (1971). · Zbl 0271.41010
[13] L. L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981). · Zbl 0449.41004
[14] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Oxford Univ. Press, Oxford, 1962). · Zbl 0017.40404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.