×

zbMATH — the first resource for mathematics

Fast convergence in evolutionary equilibrium selection. (English) Zbl 1281.91026
Summary: Stochastic best response models provide sharp predictions about equilibrium selection when the noise level is arbitrarily small. The difficulty is that, when the noise is extremely small, it can take an extremely long time for a large population to reach the stochastically stable equilibrium. An important exception arises when players interact locally in small close-knit groups; in this case convergence can be rapid for small noise and an arbitrarily large population. We show that a similar result holds when the population is fully mixed and there is no local interaction. Moreover, the expected waiting times are comparable to those in local interaction models.

MSC:
91A22 Evolutionary games
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, R. M.; May, R., Infectious diseases of humans: dynamics and control, (1991), Oxford University Press
[2] Anderson, S.; De Palma, A.; Thisse, J., Discrete choice theory of product differentiation, (1992), MIT Press Cambridge, MA · Zbl 0857.90018
[3] Benaïm, M.; Weibull, J., Deterministic approximation of stochastic evolution in games, Econometrica, 71, 3, 873-903, (2003) · Zbl 1152.91350
[4] Blume, L. E., The statistical mechanics of strategic interaction, Games Econ. Behav., 5, 3, 387-424, (1993) · Zbl 0797.90123
[5] Blume, L. E., The statistical mechanics of best-response strategy revision, Games Econ. Behav., 11, 2, 111-145, (1995) · Zbl 0840.90140
[6] Blume, L. E., How noise matters, Games Econ. Behav., 44, 2, 251-271, (2003) · Zbl 1056.91011
[7] Blume, L. E.; Durlauf, S., Equilibrium concepts for social interaction models, (2002), Department of Economics, University of Wisconsin-Madison, Working paper 7
[8] Brock, W. A.; Durlauf, S. N., Interactions-based models, (Heckman, J. J.; Leamer, E. E., Handbook of Econometrics, vol. 5, (2001)), 3297-3380, (Chapter 54)
[9] Ellison, G., Learning, local interaction, and coordination, Econometrica, 61, 5, 1047-1071, (1993) · Zbl 0802.90143
[10] Foster, D.; Young, H. P., Stochastic evolutionary game dynamics, Theor. Popul. Biol., 38, 219-232, (1990) · Zbl 0703.92015
[11] Freidlin, M.; Wentzell, A., Random perturbations of dynamical systems, (1984), Springer-Verlag Berlin · Zbl 0522.60055
[12] Hommes, C. H.; Ochea, M. I., Multiple equilibria and limit cycles in evolutionary games with logit dynamics, Games Econ. Behav., 74, 1, 434-441, (2012) · Zbl 1279.91029
[13] Jackson, M. O.; Yariv, L., Diffusion of behavior and equilibrium properties in network games, Amer. Econ. Rev., 97, 2, 92-98, (2007)
[14] Kandori, M.; Mailath, G. J.; Rob, R., Learning, mutation, and long run equilibria in games, Econometrica, 61, 1, 29-56, (1993) · Zbl 0776.90095
[15] Kurtz, T. G., Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Probab., 7, 49-58, (1970) · Zbl 0191.47301
[16] Lelarge, M., Diffusion and cascading behavior in random networks, Games Econ. Behav., 75, 2, 752-775, (2012) · Zbl 1239.91130
[17] López-Pintado, D., Contagion and coordination in random networks, Int. J. Game Theory, 34, 3, 371-381, (2006) · Zbl 1178.91027
[18] McFadden, D. L., Quantal choice analysis: a survey, NBER Chapters, Ann. Econ. Soc. Meas., 5, 4, 8-66, (1976)
[19] McKelvey, R. D.; Palfrey, T. R., Quantal response equilibria for normal form games, Games Econ. Behav., 10, 6-38, (1995) · Zbl 0832.90126
[20] Montanari, A.; Saberi, A., The spread of innovations in social networks, Proc. Natl. Acad. Sci., 107, 47, 20196-20201, (2010)
[21] Morris, S., Contagion, Rev. Econ. Stud., 67, 1, 57-78, (2000) · Zbl 0960.91016
[22] Oyama, D., Sandholm, W., Tercieux, O., 2011. Sampling best response dynamics and deterministic equilibrium selection. Mimeo, October 2011. · Zbl 1395.91054
[23] Sandholm, W. H., Almost global convergence to p-dominant equilibrium, Int. J. Game Theory, 30, 107-116, (2001) · Zbl 1060.91024
[24] Sandholm, W. H., Population games and evolutionary dynamics, (2010), MIT Press Cambridge, MA · Zbl 1208.91003
[25] Shah, D., Shin, J., 2010. Dynamics in congestion games. In: Proceedings of the ACM SIGMETRICS Conference.
[26] Watts, D. J., A simple model of global cascades on random networks, Proc. Natl. Acad. Sci., 99, 9, 5766-5771, (2002) · Zbl 1022.90001
[27] Watts, D. J.; Dodds, Influentials, networks, and public opinion formation, J. Cons. Res., 34, 4, 441-445, (2007)
[28] Young, H. P., The evolution of conventions, Econometrica, 61, 57-84, (1993) · Zbl 0773.90101
[29] Young, H. P., Individual strategy and social structure: an evolutionary theory of institutions, (1998), Princeton University Press Princeton, NJ
[30] Young, H. P., The dynamics of social innovation, Proc. Natl. Acad. Sci., 108, Suppl. 4, 21285-21291, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.